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Abstract 

Cutting content seems to be the prevalent way of meeting deadlines in projects that are 
running late. But why waste effort and time working on things that most likely, are going 
to go at the first sign of trouble?  Why don’t make the decisions about what is important 
and what is not up-front, and only start work on the latter if we have the necessary time 
to do it? 
By combining critical chain (CC) and Incremental Development (ID), two well known 
techniques, we can create a new approach to plan and execute projects, which 
guaranties, with a set probability, the delivery of an agreed subset of the total 
functionality by a preset date. 
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Introduction 

A time-bound project is a project that is constrained by hard deadlines. Hard deadlines 
are those in which the date of delivery is as important as the delivery itself. If the project 
delivers after the deadline, the delivery loses much of its value. Examples of hard 
deadlines are exhibition dates, government regulations, a competitor’s announcement 
and the customer’s own business plans.  
Most of these projects, start with more requirements that can realistically be handled 
within the imposed time constraints and consequently, midway through the development, 
they find necessary to start slashing some of them. These un-planned cuts result in 
customer frustration and wasted effort. A much better approach would be to define the 
requirements’ priority up-front, allocating their development to successive releases of the 
project in such way, that we could be almost sure that the project will deliver all the 
important requirements, that the second less important will still have a fair chance of 
being delivered, with the gold plated ones only to be done if there is any time left. 
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While the lack of requirements prioritization, is one of the reasons why most of these 
projects are late, it is certainly not the only one. The inability of traditional planning 
methods to deal with the uncertainty present on the estimates on which the plans are 
based, and the failure to recognize that development work do not progress in linear 
fashion, the infamous 90% complete syndrome, are also to blame. 
As will be explained later, traditional critical path calculations involving uncertainty 
produce considerably shorter schedules than those that should be realistically expected. 
With a shorter schedule as starting point, being late is a tautology. 
The second problem, assuming that a task progresses at a constant rate, prevents 
project managers from seeing the early signs of delay in tasks until it is too late to take 
any other action than trim down features, compromise on quality or re-schedule the 
project. 
The method [1] presented here addresses these problems by combining ideas from 
critical chain planning [2,3], incremental development [4] and rate monitoring [5] into a 
practical approach for planning and executing time-bounded projects.  
This method is not a one-stop solution for all software development problems. It just 
focuses on how to best organize a project to guarantee that a working product with an 
agreed subset of the total functionality could be delivered by a required date. 
The sections that follow explain the fundamentals of planning under uncertainty, the use 
of rate monitoring to track progress and finally the application of these concepts in 
planning and executing projects. 

Uncertainty in the planning and execution of projects 

Task statistics 

Uncertainty is the reason project management is needed. The estimates on which 
project schedules and resource allocations are based are never single numbers; 
whether spoken or not, there are many assumptions behind each of them. Some of 
these assumptions concern the complexity of the tasks, others our ability to carry them 
out. Some of them, if true, will contribute to an early completion of a task, others will add 
to the execution time. Intuitively we could see, that for a task to finish at the earliest 
possible time, all the “favorable” assumptions must be true and all the “inauspicious” 
ones false. The probability of this happening is very low. The same could be said for the 
latest possible date. The most likely date corresponds then to a situation in which the 
most probable “good” assumptions are true and the most probable “bad” ones are false. 
Numerically, the situation can be expressed by a triangular probability distribution such 
as the one shown by Figure 11. 

                                                 
1 Strictly speaking, the caption for the “y” axis in Figure 3 should read f(x) since this is a continuous distribution. The term 
probability is used instead for its intuitive appeal. 
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Figure 1. If all the favorable 
assumptions are true and all the 
gloomy are false, the task will be 
completed in 10 days, this is the 
Earliest Completion Date.  The Most 
Likely duration is 20 days. If 
everything that can go wrong, short of 
abandoning the task, goes wrong the 
task could be completed in 40 days. 
This is the Latest Completion Date. 

Since the actual probability distribution function for the duration of the task is unknown, 
the choice of a simple triangular distribution is a sensible one [5]. Its right skewedness 
captures the fact that while there is a limited number of things that can be done to 
shorten the duration of a task, the number of things that can go wrong is virtually 
unlimited. 
From the project management point of view, more important than the probability of 
finishing on a specific date, is the probability of completing the task on or before a 
certain date. This probability, called the on-time probability of the task, can be derived 
from the cumulative distribution shown in Figure 2. 

Figure 2. Cumulative probabilities. 
The Most Likely completion date 
has an on-time probability of less 
than 40%.  The Expected 
completion date is of around 23 
days. If we want to be 75% sure of 
completing the task on time we 
would have to schedule 27 days. 
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In general, the larger the number of assumptions behind the estimated task duration, the 
larger the spread between the earliest and the latest completion dates. The effect of 
such an uncertainty results in very different on-time probabilities, as shown by Figure 3. 
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Figure 3. Two tasks with the 
same Earliest and Most 
Likely, but different Latest 
Completion dates have 
different levels of risk. The 
Expected completion dates 
for the less risky task is 17 
days, while for the other is 23 
days. By the same token, the 
on-time probability of the Most 
likely date is around 37% in 
the first case and under 20% 
in the second.  

From tasks to projects 

A common approach used to assess uncertainty in projects, is to calculate the expected 
duration of the project as the sum of the expected duration of the tasks along the critical 
path, with an standard deviation equal to the square root of the sum of the squares of 
the standard deviation of the same tasks, and then to use a normal distribution to 
calculate the on-time probability for the project. This approach is based on the central 
limit theorem, which states that the distribution of the sum of a number of independent 
random variables approaches a normal distribution as the number of variables (tasks) 
grows larger. 
Assuming independent tasks duration as required by the central limit theorem, although 
a very common assumption, is perhaps one of the most dangerous a project manager 
can make. In practical terms, this assumption expresses the belief that the lateness of 
some tasks is compensated by the early completion of others and that in the end 
everything balances out. This may be a valid assumption in the construction industry and 
when dealing with events such as rain, but not in a software development project where 
an underestimation of the system’s complexity will affect the duration of most tasks in 
the same direction. Thus, if there is an underlying cause that could shift the duration of 
several tasks in the same direction, the tasks are not independent but correlated. The 
practical consequence of dealing with correlated tasks duration is an increase in the 
project’s standard deviation, which translates into higher risks. 
Other problem not addressed by traditional critical path calculations, is the problem of 
merging paths, where the earliest start of the integration task always corresponds to end 
the latest development path. This results in a mechanism that passes delays, but seldom 
passes savings! Figure 4, illustrates both cases. 
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Figure 4 – In the presence of uncertainty, the expected project duration is not equal to the sum of the expected duration 
of the tasks in the critical path. 
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Measuring Progress Using Rate of Changes 
When measuring the progress of a task in terms of its main output, i.e. requirements 
defined, LOC, errors found, pages of documentation written, etc, it is possible to observe 
that the rate of growth of the output is not constant throughout the duration of the task 
and that it more closely resembles the shape of Figure 5. This “S” pattern [7,8,9,10,11], 
typical of many intellectual activities could be explained by the existence of a number of 
actions and thought processes at the beginning and end of the task which, although 
value adding, do not contribute directly to the quantity being measured. Examples of 
such actions and thought processes are: learning, team formation and work reviews. 
Whatever the true reasons for this effect, it is so common and noticeable that has a 
name of its own: “the 90% complete syndrome”.  

Figure 5. The “S” curve. 
Production does not grow 
at a constant rate. At the 
peak of productivity, 
between weeks 3 and 5, 
the percentage complete 
soars 20% in just one 
week. Towards the end of 
the task it takes three 
more times to go from 80 
to 100% complete.  
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The result of extrapolating completion dates from the rates of progress observed through 
the half-life of the task using a straight line, is the announcement of optimistic completion 
dates that are never met. Figure 6 shows the error incurred by using a linear forecast 
instead of the “S” curve paradigm 

Figure 6. Assuming that the task 
output is 250 units of production 
(Requirements, FP, Errors detected, 
etc) a linear projection would forecast 
its completion by week 7.5 while the 
“S” curve will put it at week 9. 
Assuming the task duration was 
originally estimated to be 7 weeks, 
according to the linear projection it will 
be completed almost on time, but 
according to the “S” curve it will be 2 
weeks late. 
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Combining Critical Chain and Incremental Development 

Figure 7 illustrates the proposed project model. The Increment Planning task uses 
statistical techniques to break down the project scope into a series of Development 
Increments in such a way that it is almost certain that all requirements allocated to the 
first increment will be implemented on time; that there is a fair chance to implement 
those allocated to the second increment and so on. System Engineering encompasses 
requirements, value and trade-off analysis from a user perspective; this is the activity 
where the prioritization takes place. System Architecting is responsible for the general 
form of the solution, interface definitions and the analysis of dependencies between 
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requirements. The system architecting activity shall take and all encompassing view in 
order to prevent the surfacing of inconsistencies later in the development process. All 
three activities take place concurrently as there is a need to balance what needs to be 
done from the user perspective with what could be done from a technical perspective. 
Each Increment Development is a self-contained mini-project. We do not assume or 
impose any particular approach beneath this level, so development could be organized 
according to a waterfall or an iterative life cycle as deemed appropriate. All increments, 
but the last, are isolated from the project delivery date by a buffer whose purpose is to 
absorb any overrun in their execution.  
 
 

Hard 
deadline

Increment Planning 

System Engineering 

System Architecting 

Increment Development 2

Increment Development 3

Buffer 2 

Buffer 1Increment Development 1

Figure 7. Combining CC and IC in a single project Model 
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During execution, work progress is forecasted using models that more closely resemble 
the way people work than a simple extrapolation of last week’s results. As shown by 
Figure 8, the output from the models is used to forecast the activities’ completion dates 
and to take corrective actions. Work in one increment does not start until the previous 
one is completed. This prevents people from wasting time developing things that might 
never be finished anyway 

Work Processes 
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Figure 8. Project tracking
roject Planning 
nce the feasibility of the project has been established, the next step is to define the 
uration of the development tasks in terms of its Best, Most Likely and Worst case 
cenarios as functions of the increment’s scope. Second, the content of the increment is 
djusted so it will have a high probability, i.e. 95%, of being completed in the allotted 
me. Third, the tasks are re-scheduled using the duration that corresponds to a 50% on-
me probability, allocating the difference between the high and the lower confidence 
ates to a buffer. The next increment is then planned using the length of the buffer as 
e time allotted.  
wo aspects that need to be considered in the selection of the requirements to be 
eveloped in each increment are: the technical dependencies that might exist between 
em and the need to provide functionally complete subsets to the user. 
igure 9 illustrates the overall process and the boxed note at the end of the paper, the 
robability calculations.  
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a) Total project duration. b) First priority requirements planned at 95% certainty. c) First priority requirements scheduled at 50% 
probability of being on time. d) Requirements that did not fit into Increment 1 are moved into increment 2. e, f, g & h) The 
process is repeated. 
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b) 

c) 

d) 

e) 

f) 

g) 

h) 

Requirements 

Plan increment 
n at 95% 

confidence 

Reduce scope 
of increment n 

Calculate buffer 
size 

Buffer n = Project Target 
Date – Increment 

Completion Date at 50% 

Select priority  
n requirements 

No 

Yes

Plan next increment 
Schedule 

increment n with a 
50% chance of 

being completed 
on time

Plan fits time 
allotted? 

Allotted Time 

e 
Figure 9 Increments are planned to fit within the allotted tim
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Table 1 shows the approximate2 probabilities of delivering the content of each increment 
when planned according to the proposed approach. Compare this to a conventional 
plan, in which every requirement has the same probability, let’s say 50% irrespective of 
its importance to the user. 

Table 1 - Success Probabilities 

Increment Calculation On-time 
probability 

1 As planned 95% 

1 + 2 0.50 * 0.95 ≈ 47.5% 

1 + 2 + 3 0.50 * 0.50 * 0.50 ≈ 12.5% 

 

Estimating the Minimum, Most Likely and Maximum durations 

Although the specific techniques for estimating the minimum, most likely and maximum 
duration of the tasks will depend on whether the estimation is done using a cost model, 
an expert approach or a Delphi process, it is crucial to the success of the method, that 
all completion dates that could reasonably be expected, be included between the 
minimum and the maximum duration.  
In the case of a parametric cost model like CoCoMo, this could be done for example, by 
changing the value of key cost drivers such as SLOC, PCAP or CPLX3 and in the case 
of the Delphi process by recording, not only the converging value, but the optimistic and 
pessimistic estimates as well. 
Project Control 

In a time-bound project there is very little room for recovery, so once a problem 
manifests itself, it is almost too late. Controlling a project under these circumstances 
requires a mechanism that: 
1. Identifies the early the signs of a delay; 
2. Minimizes false alarms; 
3. Minimizes disturbances to ongoing work; 
4. Provides a clear definition of what will be delivered and by when. 
While the first three properties are important to the people working and managing the 
project, the fourth is of utmost importance to the customer who depends on the project’s 
deliverables to execute his own business plan. 
The early identification of a delay is achieved by updating the buffers, not with the 
actuals but with the estimates at completion (EAC) of the individual tasks. The estimates 
are computed by fitting a Rayleigh curve to the progress reported, and then projecting it 
into the future. 

                                                 
2 These calculations assume that the times it takes to develop each increment are independent from one another. As was 
said earlier this is seldom the case, nonetheless these numbers offer a reasonable approximation. 
3 These are cost drivers defined in the CoCoMo II model. SLOC stands for Source Lines of Code,  PCAP for Programmer 
Capability and CPLX for Software Complexity. 
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False alarms and disturbances to on-going work are prevented by the use of buffers, 
which isolate workers from overreactions to small variations, by absorbing up to a 25% 
variance before sending a signal. 
Figure 10 describes the control approach. Depending on the specific task being 
monitored, the units in which the work performed is measured will be Requirements 
Defined, LOC produced per week, number of errors detected, etc. 
The re-planning of the next increment, if necessary, should take into consideration 
whether the factors that affected the development of the current increment will also have 
an effect on it, and the duration an effort adjusted accordingly4. 

Work 
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Figure 10 Monitoring progress and triggering of re-planning
ewards, recognition and price incentives 

ow can all project stakeholders be sure that the best effort will be applied towards 
plementing all requirements and that people will not just get by implementing those in 
e first increment? The answer could be found in the reward and recognition system. 
hether employee’s rewards or price incentives in contracts, the incremental model 

rovides a clear criterion by which performance can be evaluated and rewarded. The 
elivery of the first increment has no reward associated with it: everybody is just doing 
eir job; subsequent increments result in increased recognition of the extra effort put 
to the task. 
he On-time probabilities shown in Table 1 can be used to calculate the expected value 
f the reward. This calculation is important because a large amount, with a very small 
robability will result in a low expected value and could be perceived as a lottery by the 
mployees, thus failing to act as motivator. 

                                               
his valuable idea was suggested by one of the reviewers.  
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As an example, a $5,000 reward for “Increment 2” has an expected value of $2,375. The 
same amount applied to “Increment 3” has an expected value of $625. Clearly, the 
motivational value of the reward is not the same in both cases. 

Our contribution 

As mentioned at the beginning of the paper, the proposed approach brings together 
several existing techniques. Its value resides precisely in this. Specifically we combine a 
general project management approach like Critical Chain with a well-known software 
development method, the incremental model, to realize a new approach specially 
conceived to deal with time-bounded projects. We also provide a decision rule to 
calculate the size of the increments to be developed, a reward model based on the 
expected value of the increments and a recommendation to track the project based on 
forecasts rather than in actual progress. Furthermore, we do not presume independent 
tasks' duration, which leads to significant differences in the size of the buffers and 
addresses one of the main issues raised by the critics of the Critical Chain approach. 

Summary 

The premise in which the method is based, is that businesses are better off when they 
know what could, realistically, be expected than when they are promised the moon, but 
no assurances are given with respect as to when they could get it.  
By taking a probabilistic, rather than a deterministic approach, the method recognizes 
that in any development project there are hundreds of things that can go right and 
thousands that can go wrong and makes them an intrinsic part of the planning and 
control processes. 
Although still in an experimental stage, the method proposed in this paper has received 
a warm welcome when presented both, within and outside Ericsson.  
Up to today, the main obstacles found to the wider acceptance of the techniques 
proposed, has nothing to do with the validity of the arguments cited or the rationale 
behind the method, but rather with a “can do attitude” that rejects the existence of things 
over which we have limited control and the prevalence of a business culture which 
seems to reward wild promises over a bounded rationality. 
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Calculating Project Probabilities 
The most common way of calculating project probabilities is using the PERT approach: 
1. For each activity i, produce best, most likely and worst case estimates. 
2. Compute the mean, di and standard deviation, si of each task using the following 

formulas5: 

( ) ( ) ( )
18
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2 WorstMostLikelyMostLikelyBestWorstWorstMostLikelyBestBests

WorstMostLikelyBestd

i

i

−+−+−
=

++
=

 

3. Determine the critical path based on the dI , i = 1,2,…,n 
4. Once the critical activities are identified, sum their means and variances to find the 

mean and standard deviation of the project length using the following formulas: 
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5. Calculate the probability of finishing before a given date T using the formula below 
and a table of normal probabilities: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
≤=≤

DevProjectStd
gthProjectLenTtPTtP  

The approach described above works well as long as the duration of the tasks is 
independent, however as mentioned before this is hardly the case in most software 
development projects. The calculation of the variance of a project on the presence of 
correlated variables is a complicated process, which requires the calculation of the task’s 
covariance, so a better approach is to use a method called Monte Carlo simulation. At 
Ericsson a homegrown tool called MinimumTime, see below, implements all necessary 
calculations. More sophisticated packages could be obtained from specialized vendors 
such as Primavera, Palisade or Crystal Ball. 

 

                                                 
5 These formulas assume a triangular distribution. Other approximations, such as the traditional PERT calculations based 
on the beta distribution, could be also used. 
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