
Combining Critical Chain Planning and Incremental
Development in Software Development Projects

Author Biography

Eduardo Miranda is a Program Director at Ericsson Research Canada and an industrial
researcher affiliated with the Research Laboratory in Software Engineering Management
at the Université du Québec à Montréal. He is in charge of investigating new
management techniques for planning and tracking projects. He has a BSc in System
Analysis from the University of Buenos Aires, Argentina, a MEng. from the University of
Ottawa, Canada and a MSc. In Project Mangement from the University of Linköping,
Sweden. He is a member of the IEEE Computer Society and the ACM. Contact him at
Ericsson Research Canada, 8500 Decaire Blvd., Town of Mount Royal, Quebec, H4P
2N2, Canada; eduardo.miranda@ericsson.ca.

Abstract

Cutting content seems to be the prevalent way of meeting deadlines in projects that are
running late. But why waste effort and time working on things that most likely, are going
to go at the first sign of trouble? Why don’t make the decisions about what is important
and what is not up-front, and only start work on the latter if we have the necessary time
to do it?
By combining critical chain (CC) and Incremental Development (ID), two well known
techniques, we can create a new approach to plan and execute projects, which
guaranties, with a set probability, the delivery of an agreed subset of the total
functionality by a preset date.

Keywords

Project planning, incremental development, critical chain, risk management, project
management and control, design-to-schedule.

Introduction

A time-bound project is a project that is constrained by hard deadlines. Hard deadlines
are those in which the date of delivery is as important as the delivery itself. If the project
delivers after the deadline, the delivery loses much of its value. Examples of hard
deadlines are exhibition dates, government regulations, a competitor’s announcement
and the customer’s own business plans.
Most of these projects, start with more requirements that can realistically be handled
within the imposed time constraints and consequently, midway through the development,
they find necessary to start slashing some of them. These un-planned cuts result in
customer frustration and wasted effort. A much better approach would be to define the
requirements’ priority up-front, allocating their development to successive releases of the
project in such way, that we could be almost sure that the project will deliver all the
important requirements, that the second less important will still have a fair chance of
being delivered, with the gold plated ones only to be done if there is any time left.

1

mailto:eduardo.miranda@lmc.ericsson.se
mirandae
Typewritten Text
Originally published in the PMI World Congress, Prague, Czech Republic, May 2004

mirandae
Typewritten Text

mirandae
Typewritten Text

While the lack of requirements prioritization, is one of the reasons why most of these
projects are late, it is certainly not the only one. The inability of traditional planning
methods to deal with the uncertainty present on the estimates on which the plans are
based, and the failure to recognize that development work do not progress in linear
fashion, the infamous 90% complete syndrome, are also to blame.
As will be explained later, traditional critical path calculations involving uncertainty
produce considerably shorter schedules than those that should be realistically expected.
With a shorter schedule as starting point, being late is a tautology.
The second problem, assuming that a task progresses at a constant rate, prevents
project managers from seeing the early signs of delay in tasks until it is too late to take
any other action than trim down features, compromise on quality or re-schedule the
project.
The method [1] presented here addresses these problems by combining ideas from
critical chain planning [2,3], incremental development [4] and rate monitoring [5] into a
practical approach for planning and executing time-bounded projects.
This method is not a one-stop solution for all software development problems. It just
focuses on how to best organize a project to guarantee that a working product with an
agreed subset of the total functionality could be delivered by a required date.
The sections that follow explain the fundamentals of planning under uncertainty, the use
of rate monitoring to track progress and finally the application of these concepts in
planning and executing projects.

Uncertainty in the planning and execution of projects

Task statistics

Uncertainty is the reason project management is needed. The estimates on which
project schedules and resource allocations are based are never single numbers;
whether spoken or not, there are many assumptions behind each of them. Some of
these assumptions concern the complexity of the tasks, others our ability to carry them
out. Some of them, if true, will contribute to an early completion of a task, others will add
to the execution time. Intuitively we could see, that for a task to finish at the earliest
possible time, all the “favorable” assumptions must be true and all the “inauspicious”
ones false. The probability of this happening is very low. The same could be said for the
latest possible date. The most likely date corresponds then to a situation in which the
most probable “good” assumptions are true and the most probable “bad” ones are false.
Numerically, the situation can be expressed by a triangular probability distribution such
as the one shown by Figure 11.

1 Strictly speaking, the caption for the “y” axis in Figure 3 should read f(x) since this is a continuous distribution. The term
probability is used instead for its intuitive appeal.

2

0.00
0.02
0.04

0.06
0.08
0.10
0.12
0.14

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
duration (days)

pr
ob

ab
ilit

y

Figure 1. If all the favorable
assumptions are true and all the
gloomy are false, the task will be
completed in 10 days, this is the
Earliest Completion Date. The Most
Likely duration is 20 days. If
everything that can go wrong, short of
abandoning the task, goes wrong the
task could be completed in 40 days.
This is the Latest Completion Date.

Since the actual probability distribution function for the duration of the task is unknown,
the choice of a simple triangular distribution is a sensible one [5]. Its right skewedness
captures the fact that while there is a limited number of things that can be done to
shorten the duration of a task, the number of things that can go wrong is virtually
unlimited.
From the project management point of view, more important than the probability of
finishing on a specific date, is the probability of completing the task on or before a
certain date. This probability, called the on-time probability of the task, can be derived
from the cumulative distribution shown in Figure 2.

Figure 2. Cumulative probabilities.
The Most Likely completion date
has an on-time probability of less
than 40%. The Expected
completion date is of around 23
days. If we want to be 75% sure of
completing the task on time we
would have to schedule 27 days.

0%

20%

40%

60%

80%

100%

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
duration (days)

pr
ob

ab
ilit

y

In general, the larger the number of assumptions behind the estimated task duration, the
larger the spread between the earliest and the latest completion dates. The effect of
such an uncertainty results in very different on-time probabilities, as shown by Figure 3.

3

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
duration (days)

pr
ob

ab
ilit

y

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
duration (days)

pr
ob

ab
ilit

y

Figure 3. Two tasks with the
same Earliest and Most
Likely, but different Latest
Completion dates have
different levels of risk. The
Expected completion dates
for the less risky task is 17
days, while for the other is 23
days. By the same token, the
on-time probability of the Most
likely date is around 37% in
the first case and under 20%
in the second.

From tasks to projects

A common approach used to assess uncertainty in projects, is to calculate the expected
duration of the project as the sum of the expected duration of the tasks along the critical
path, with an standard deviation equal to the square root of the sum of the squares of
the standard deviation of the same tasks, and then to use a normal distribution to
calculate the on-time probability for the project. This approach is based on the central
limit theorem, which states that the distribution of the sum of a number of independent
random variables approaches a normal distribution as the number of variables (tasks)
grows larger.
Assuming independent tasks duration as required by the central limit theorem, although
a very common assumption, is perhaps one of the most dangerous a project manager
can make. In practical terms, this assumption expresses the belief that the lateness of
some tasks is compensated by the early completion of others and that in the end
everything balances out. This may be a valid assumption in the construction industry and
when dealing with events such as rain, but not in a software development project where
an underestimation of the system’s complexity will affect the duration of most tasks in
the same direction. Thus, if there is an underlying cause that could shift the duration of
several tasks in the same direction, the tasks are not independent but correlated. The
practical consequence of dealing with correlated tasks duration is an increase in the
project’s standard deviation, which translates into higher risks.
Other problem not addressed by traditional critical path calculations, is the problem of
merging paths, where the earliest start of the integration task always corresponds to end
the latest development path. This results in a mechanism that passes delays, but seldom
passes savings! Figure 4, illustrates both cases.

4

design = 20, 25, 50

integration = 40, 45, 60

development path “2“ = 5, 15, 25

development path “1” = 20, 30, 45

Probability Distribution For Project Completion (simulation)

0%
5%

10%
15%
20%

25%
30%
35%
40%

79 89 99 109 119 129 139 149 159
days

Pr
ob

ab
ilit

y

Independent task duration Correlated task duration

 design = 20, 25, 30

integration = 40, 45, 50

development path “1” = 20, 30, 40

development path “2” = 20, 30, 40

Probability Dis tribution For Project Com pletion (s im ulation)

0%

5%

10%

15%

20%

25%

30%

85 90 95 100 105 110 115 120 125
days

Pr
ob

ab
ilit

y

Expected duration
according to the

sum of tasks
averages

Expected duration
according to the

simulation

Figure 4 – In the presence of uncertainty, the expected project duration is not equal to the sum of the expected duration
of the tasks in the critical path.

5

Measuring Progress Using Rate of Changes
When measuring the progress of a task in terms of its main output, i.e. requirements
defined, LOC, errors found, pages of documentation written, etc, it is possible to observe
that the rate of growth of the output is not constant throughout the duration of the task
and that it more closely resembles the shape of Figure 5. This “S” pattern [7,8,9,10,11],
typical of many intellectual activities could be explained by the existence of a number of
actions and thought processes at the beginning and end of the task which, although
value adding, do not contribute directly to the quantity being measured. Examples of
such actions and thought processes are: learning, team formation and work reviews.
Whatever the true reasons for this effect, it is so common and noticeable that has a
name of its own: “the 90% complete syndrome”.

Figure 5. The “S” curve.
Production does not grow
at a constant rate. At the
peak of productivity,
between weeks 3 and 5,
the percentage complete
soars 20% in just one
week. Towards the end of
the task it takes three
more times to go from 80
to 100% complete.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9

week

pe
rc

en
ta

ge
 c

om
pl

et
e

The result of extrapolating completion dates from the rates of progress observed through
the half-life of the task using a straight line, is the announcement of optimistic completion
dates that are never met. Figure 6 shows the error incurred by using a linear forecast
instead of the “S” curve paradigm

Figure 6. Assuming that the task
output is 250 units of production
(Requirements, FP, Errors detected,
etc) a linear projection would forecast
its completion by week 7.5 while the
“S” curve will put it at week 9.
Assuming the task duration was
originally estimated to be 7 weeks,
according to the linear projection it will
be completed almost on time, but
according to the “S” curve it will be 2
weeks late.

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9

week

pr
od

uc
tio

n
un

its

"S" curve Linear

Combining Critical Chain and Incremental Development

Figure 7 illustrates the proposed project model. The Increment Planning task uses
statistical techniques to break down the project scope into a series of Development
Increments in such a way that it is almost certain that all requirements allocated to the
first increment will be implemented on time; that there is a fair chance to implement
those allocated to the second increment and so on. System Engineering encompasses
requirements, value and trade-off analysis from a user perspective; this is the activity
where the prioritization takes place. System Architecting is responsible for the general
form of the solution, interface definitions and the analysis of dependencies between

6

requirements. The system architecting activity shall take and all encompassing view in
order to prevent the surfacing of inconsistencies later in the development process. All
three activities take place concurrently as there is a need to balance what needs to be
done from the user perspective with what could be done from a technical perspective.
Each Increment Development is a self-contained mini-project. We do not assume or
impose any particular approach beneath this level, so development could be organized
according to a waterfall or an iterative life cycle as deemed appropriate. All increments,
but the last, are isolated from the project delivery date by a buffer whose purpose is to
absorb any overrun in their execution.

Hard
deadline

Increment Planning

System Engineering

System Architecting

Increment Development 2

Increment Development 3

Buffer 2

Buffer 1Increment Development 1

Figure 7. Combining CC and IC in a single project Model

7

During execution, work progress is forecasted using models that more closely resemble
the way people work than a simple extrapolation of last week’s results. As shown by
Figure 8, the output from the models is used to forecast the activities’ completion dates
and to take corrective actions. Work in one increment does not start until the previous
one is completed. This prevents people from wasting time developing things that might
never be finished anyway

Work Processes
(Syst. Engineering,

Development,
Integration)

Forecast
Completion

Date

Underlying
Process Model
for the activity

Adjust Plan

P
O
d
s
a
ti
ti
d
th
T
d
th
F
p

Figure 8. Project tracking
roject Planning
nce the feasibility of the project has been established, the next step is to define the
uration of the development tasks in terms of its Best, Most Likely and Worst case
cenarios as functions of the increment’s scope. Second, the content of the increment is
djusted so it will have a high probability, i.e. 95%, of being completed in the allotted
me. Third, the tasks are re-scheduled using the duration that corresponds to a 50% on-
me probability, allocating the difference between the high and the lower confidence
ates to a buffer. The next increment is then planned using the length of the buffer as
e time allotted.
wo aspects that need to be considered in the selection of the requirements to be
eveloped in each increment are: the technical dependencies that might exist between
em and the need to provide functionally complete subsets to the user.
igure 9 illustrates the overall process and the boxed note at the end of the paper, the
robability calculations.

8

a) Total project duration. b) First priority requirements planned at 95% certainty. c) First priority requirements scheduled at 50%
probability of being on time. d) Requirements that did not fit into Increment 1 are moved into increment 2. e, f, g & h) The
process is repeated.

Allotted Time

a)

b)

c)

d)

e)

f)

g)

h)

Requirements

Plan increment
n at 95%

confidence

Reduce scope
of increment n

Calculate buffer
size

Buffer n = Project Target
Date – Increment

Completion Date at 50%

Select priority
n requirements

No

Yes

Plan next increment
Schedule

increment n with a
50% chance of

being completed
on time

Plan fits time
allotted?

Allotted Time

e
Figure 9 Increments are planned to fit within the allotted tim
9

Table 1 shows the approximate2 probabilities of delivering the content of each increment
when planned according to the proposed approach. Compare this to a conventional
plan, in which every requirement has the same probability, let’s say 50% irrespective of
its importance to the user.

Table 1 - Success Probabilities

Increment Calculation On-time
probability

1 As planned 95%

1 + 2 0.50 * 0.95 ≈ 47.5%

1 + 2 + 3 0.50 * 0.50 * 0.50 ≈ 12.5%

Estimating the Minimum, Most Likely and Maximum durations

Although the specific techniques for estimating the minimum, most likely and maximum
duration of the tasks will depend on whether the estimation is done using a cost model,
an expert approach or a Delphi process, it is crucial to the success of the method, that
all completion dates that could reasonably be expected, be included between the
minimum and the maximum duration.
In the case of a parametric cost model like CoCoMo, this could be done for example, by
changing the value of key cost drivers such as SLOC, PCAP or CPLX3 and in the case
of the Delphi process by recording, not only the converging value, but the optimistic and
pessimistic estimates as well.
Project Control

In a time-bound project there is very little room for recovery, so once a problem
manifests itself, it is almost too late. Controlling a project under these circumstances
requires a mechanism that:
1. Identifies the early the signs of a delay;
2. Minimizes false alarms;
3. Minimizes disturbances to ongoing work;
4. Provides a clear definition of what will be delivered and by when.
While the first three properties are important to the people working and managing the
project, the fourth is of utmost importance to the customer who depends on the project’s
deliverables to execute his own business plan.
The early identification of a delay is achieved by updating the buffers, not with the
actuals but with the estimates at completion (EAC) of the individual tasks. The estimates
are computed by fitting a Rayleigh curve to the progress reported, and then projecting it
into the future.

2 These calculations assume that the times it takes to develop each increment are independent from one another. As was
said earlier this is seldom the case, nonetheless these numbers offer a reasonable approximation.
3 These are cost drivers defined in the CoCoMo II model. SLOC stands for Source Lines of Code, PCAP for Programmer
Capability and CPLX for Software Complexity.

10

False alarms and disturbances to on-going work are prevented by the use of buffers,
which isolate workers from overreactions to small variations, by absorbing up to a 25%
variance before sending a signal.
Figure 10 describes the control approach. Depending on the specific task being
monitored, the units in which the work performed is measured will be Requirements
Defined, LOC produced per week, number of errors detected, etc.
The re-planning of the next increment, if necessary, should take into consideration
whether the factors that affected the development of the current increment will also have
an effect on it, and the duration an effort adjusted accordingly4.

Work
performed

Forecast Task
Completion

Date

Performance
Baseline

Buffer
n

overun
+ 25%

Replan
next

increment

Replan
current

increment

overun
+ 50%

Units depend on
task being
monitored

Adjust Buffer
Size

R

H
im
th
W
p
d
th
in
T
o
p
e

4 T

Figure 10 Monitoring progress and triggering of re-planning
ewards, recognition and price incentives

ow can all project stakeholders be sure that the best effort will be applied towards
plementing all requirements and that people will not just get by implementing those in
e first increment? The answer could be found in the reward and recognition system.
hether employee’s rewards or price incentives in contracts, the incremental model

rovides a clear criterion by which performance can be evaluated and rewarded. The
elivery of the first increment has no reward associated with it: everybody is just doing
eir job; subsequent increments result in increased recognition of the extra effort put
to the task.
he On-time probabilities shown in Table 1 can be used to calculate the expected value
f the reward. This calculation is important because a large amount, with a very small
robability will result in a low expected value and could be perceived as a lottery by the
mployees, thus failing to act as motivator.

his valuable idea was suggested by one of the reviewers.

11

As an example, a $5,000 reward for “Increment 2” has an expected value of $2,375. The
same amount applied to “Increment 3” has an expected value of $625. Clearly, the
motivational value of the reward is not the same in both cases.

Our contribution

As mentioned at the beginning of the paper, the proposed approach brings together
several existing techniques. Its value resides precisely in this. Specifically we combine a
general project management approach like Critical Chain with a well-known software
development method, the incremental model, to realize a new approach specially
conceived to deal with time-bounded projects. We also provide a decision rule to
calculate the size of the increments to be developed, a reward model based on the
expected value of the increments and a recommendation to track the project based on
forecasts rather than in actual progress. Furthermore, we do not presume independent
tasks' duration, which leads to significant differences in the size of the buffers and
addresses one of the main issues raised by the critics of the Critical Chain approach.

Summary

The premise in which the method is based, is that businesses are better off when they
know what could, realistically, be expected than when they are promised the moon, but
no assurances are given with respect as to when they could get it.
By taking a probabilistic, rather than a deterministic approach, the method recognizes
that in any development project there are hundreds of things that can go right and
thousands that can go wrong and makes them an intrinsic part of the planning and
control processes.
Although still in an experimental stage, the method proposed in this paper has received
a warm welcome when presented both, within and outside Ericsson.
Up to today, the main obstacles found to the wider acceptance of the techniques
proposed, has nothing to do with the validity of the arguments cited or the rationale
behind the method, but rather with a “can do attitude” that rejects the existence of things
over which we have limited control and the prevalence of a business culture which
seems to reward wild promises over a bounded rationality.

Acknowledgements

Thanks to Tamara Keating, Ericsson Research Canada; Alain Abran, Université du
Québec à Montréal; and Raul Martinez, RMyA, and the IEEE reviewers for their
comments and insight.

References

1. Planning Time Bounded Projects, IEEE Computer, March 2002,Volume 35, Number
3

2. Critical Chain, E. Goldratt, The North River Press, 1997
3. Project Management in the Fast Lane, R. Newbold, St. Lucie Press, 1998
4. Rapid Development, Taming Wild Software Schedules, S. McConnell, Microsoft

Press, 1996

12

5. Technical Performance Measurement, Earned Value and Risk Management: An
Integrated Diagnostic Tool for Program Management, N. Pisano,
http://www.acq.osd.mil/pm/paperpres/nickp/nickpaso.htm

6. Practical Risk Assessment for Project Management, S. Grey, John Wiley & Sons,
1995

7. A Model for Software Development Effort and Cost Estimation, K. Pillai and S. Nair,
IEEE Transactions on Software Engineering, Vol. 23, No.8, 1997

8. Measures for Excellence – Reliable Software On Time, Within Budget, Prentice-Hall,
1992

9. Technological Forecasting for Decision Making, J. Martino, McGraw-Hill, 1993
10. The Use of Reliability Growth Models in Project Management, E. Miranda, 9th

International Symposium in Software Reliability, IEEE, 1998
11. On Predicting Software Related Performance of Large-Scale Systems, J. Gaffney,

CMG XV, San Francisco 1984

13

http://www.acq.osd.mil/pm/paperpres/nickp/nickpaso.htm

Calculating Project Probabilities
The most common way of calculating project probabilities is using the PERT approach:
1. For each activity i, produce best, most likely and worst case estimates.
2. Compute the mean, di and standard deviation, si of each task using the following

formulas5:

() () ()
18

3
2 WorstMostLikelyMostLikelyBestWorstWorstMostLikelyBestBests

WorstMostLikelyBestd

i

i

−+−+−
=

++
=

3. Determine the critical path based on the dI , i = 1,2,…,n
4. Once the critical activities are identified, sum their means and variances to find the

mean and standard deviation of the project length using the following formulas:

22
2

2
1 ... p

p

i i

sssDevProjectStd

dgthProjectLen

+++=

=∑

5. Calculate the probability of finishing before a given date T using the formula below
and a table of normal probabilities:

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
≤=≤

DevProjectStd
gthProjectLenTtPTtP

The approach described above works well as long as the duration of the tasks is
independent, however as mentioned before this is hardly the case in most software
development projects. The calculation of the variance of a project on the presence of
correlated variables is a complicated process, which requires the calculation of the task’s
covariance, so a better approach is to use a method called Monte Carlo simulation. At
Ericsson a homegrown tool called MinimumTime, see below, implements all necessary
calculations. More sophisticated packages could be obtained from specialized vendors
such as Primavera, Palisade or Crystal Ball.

5 These formulas assume a triangular distribution. Other approximations, such as the traditional PERT calculations based
on the beta distribution, could be also used.

14

	Combining Critical Chain Planning and Incremental Developmen
	Author Biography
	Eduardo Miranda is a Program Director at Ericsson Research C
	Abstract
	Keywords
	Introduction
	Uncertainty in the planning and execution of projects
	Task statistics
	From tasks to projects

	Measuring Progress Using Rate of Changes
	Combining Critical Chain and Incremental Development
	Project Planning
	Estimating the Minimum, Most Likely and Maximum durations
	Project Control
	Rewards, recognition and price incentives

	Our contribution
	Summary
	Acknowledgements
	References

	Calculating Project Probabilities

