
0018-9162/02/$17.00 © 2002 IEEE March 2002 73

R E S E A R C H F E A T U R E

Planning and Executing
Time-Bound Projects

A
time-bound project is constrained by hard
deadlines in which the timing of the deliv-
ery is as important as the delivery itself.
Another way to put it is that if you deliver
after the deadline, the delivery loses much

of its value. Examples of hard deadlines include
exhibition dates, competitors’ announcements, and
government-imposed regulations.

As with many other projects, most time-bound
projects start with more requirements than devel-
opers can realistically handle within the imposed
time constraints. As a result, they often have to start
slashing these requirements halfway through the
project, resulting in missed deadlines, customer frus-
tration, and wasted effort.

A better approach is to define requirement pri-
orities prior to starting a project and then allocate
their development to successive releases of the pro-
ject. With this approach, ever under severe adver-
sity, the development team can guarantee delivery
of the most important requirements by the deadline
while still having a fair chance of completing less
important requirements.

But failing to prioritize requirements is not the only
reason that projects miss deadlines. The inability of
traditional planning methods to deal with the uncer-
tainty of estimates on which the plans are based and
the failure to recognize that development work does
not progress in linear fashion (the infamous 90-
percent-complete syndrome) are also to blame.

Traditional critical-path calculations that attempt
to address development uncertainties tend to pro-
duce considerably shorter schedules than what is
realistic. With a shorter schedule as a starting point,

being late often occurs almost by definition. The
second problem, assuming that a task progresses at
a constant rate, prevents project managers from see-
ing the early signs of delay until it is too late to take
any other action except to trim features, compro-
mise on quality, or reschedule the project.

Statistically Planned Incremental Deliveries (SPID)
addresses these problems by combining ideas from
critical chain planning,1,2 incremental development,3

and rate monitoring4 into a practical method for
planning and executing time-bound projects. SPID
focuses on how best to organize a project to guar-
antee delivery of at least a working product with an
agreed subset of the total functionality by the
required date.

TASK UNCERTAINTIES
Uncertainty is the root of all evil. If there were no

variability, the solution would be simple. We could
just make good plans and execute them as planned.
The problem is that no matter how good the plans
are, the estimates on which we base schedules and
allocate resources rest on hundreds of assumptions
about the complexity of the tasks, the ability of the
development team to execute those tasks, the abil-
ity of the suppliers to deliver on time, the avail-
ability of a certain technology, the stability of the
requirements, and even assumptions about the
things we don’t know.

If these assumptions turn out to be valid, some
will contribute to the early completion of a task
while others will add to its execution time. To com-
plete a task at the earliest possible time, all the
favorable assumptions must be true and all the

The SPID approach combines critical chain planning with incremental
development and rate monitoring to help software developers meet
project deadlines.

Eduardo
Miranda
Ericsson Research
Canada

mirandae
Typewritten Text
"©2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE."

74 Computer

unfavorable assumptions must be false. The prob-
ability of this happening is very low. We can say the
same thing about the latest possible completion
date. The most likely date corresponds to a situa-
tion in which the most probable favorable assump-
tions are true and the most probable unfavorable
assumptions are false. The triangular probability

distribution shown in Figure 1 expresses these
observations numerically.

Since the actual probability distribution func-
tion for the duration of the task is unknown, a sim-
ple triangular distribution is a sensible choice.5 A
right-skewed triangular distribution captures the
idea that while you can do only a limited number
of things to shorten the duration of a task, the
number of things that can go wrong is almost
unlimited.

From the project-management point of view, the
probability of completing a specific task on or
before a certain date is more important than the
probability of finishing the task on a specific date.
The cumulative distribution shown in Figure 2
determines the task’s on-time probability.

In general, the greater the number of assump-
tions behind a task’s duration, the larger the spread
between the earliest and latest completion dates.
Such uncertainty results in very different on-time
probabilities, as Figure 3 shows.

FROM TASK TO PROJECTS
In moving from tasks to projects, conventional

critical path planning relies on using the central
limit theorem to assess the project’s uncertainty.
According to this theorem, the distribution of the
sum of several independent random variables
approaches a normal distribution as the number of
variables grows larger. To assess project uncertainty
using this approach, you calculate the expected
duration of the project as the sum of the expected
task duration along the critical path, with a stan-
dard deviation equal to the square root of the sum
of the squares of the standard deviation of the same
tasks. Then you use a normal distribution to cal-
culate the on-time probability for the project.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Duration (days)

Pr
ob

ab
ili

ty

Figure 1. Triangular probability distribution. If all the favorable assumptions turn
out to be true and all unfavorable assumptions turn out to be false, the team will
complete the task in 10 days—the earliest completion date. The most likely com-
pletion date, however, is 20 days. If everything that can go wrong does go wrong,
the team will complete the task in 40 days—the latest completion date.

0

20

40

60

80

100

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Duration (days)

Pr
ob

ab
ili

ty
 (p

er
ce

nt
)

Figure 2. Cumulative distribution. The most likely completion date has an on-time
probability of less than 40 percent. In this case, the expected completion date is
around 23 days. To be 75 percent sure of completing the task on time, the sched-
ule must allow 27 days.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Duration (days)

Pr
ob

ab
ili

ty

0
10
20
30
40
50
60
70
80
90

100

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Duration (days)

Pr
ob

ab
ili

ty
 (p

er
ce

nt
)

Less risky
More risky

Figure 3. On-time probabilities. Two tasks with the same earliest and most likely but different latest-completion dates have different levels of
risk. (a) The expected completion date for the less risky task is 17 days, while the completion date for the more risky task is 23 days. (b) The
on-time probability of the most likely date is around 37 percent in the first case and less than 20 percent in the second.

(a) (b)

March 2002 75

However, assuming independent task dura-
tions—a requirement of the central limit theorem—
is perhaps one of the most dangerous assumptions
a project manager can make. In practical terms,
assuming independent task durations expresses the
common belief that the late completion of some
tasks is compensated by the early completion of
others, so that, in the end, everything balances out.
This assumption might be valid in certain indus-
tries (such as construction) or when dealing with
certain events (such as rain), but it is particularly
damaging in software development.

In a software development project, if one task is
late because the complexity of the system was
underestimated or the caliber of the team overesti-
mated, it is highly likely that all tasks sharing the
same underlying cause will be late, too. Thus if task
durations are correlated through a common cause,
the balancing process does not take place.

From a statistical perspective, dealing with cor-
related variables has two important consequences:

First, the resulting distribution does not tend to
have the bell-shaped curve that characterizes the
normal distribution; second, the standard devia-
tion tends to be larger than in the case of the sum
of independent variables. From a practical per-
spective, this translates into an expected project
duration that is located to the right, timewise, of
that assumed under a normal distribution and into
a higher uncertainty.

Another problem that traditional critical path
calculations do not address is merging paths. As
Figure 4 shows, when two or more tasks merge into
an integration task, the earliest start of the inte-
gration task always corresponds to the late finish
of the last completed precursor task. The merged
path results in a mechanism that passes on delays
but seldom passes on savings.

MEASURING PROGRESS
When measuring a task’s progress in terms of its

main output—such as defined requirements, lines

Design = 20, 25, 50 Integration = 40, 45, 60

Development path 2 = 5, 15, 25

Development path 1 = 20, 30, 45

Probability distribution for project completion (simulation)

0

5

10

15

20

25

30

35

40

79 89 99 109 119 129 139 149 159
Days

Pr
ob

ab
ili

ty
 (p

er
ce

nt
)

Design = 20, 25, 30 Integration = 40, 45, 50

Development path 1 = 20, 30, 40

Development path 2 = 20, 30, 40

Probability distribution for project completion (simulation)

0

5

10

15

20

25

30

85 90 95 100 105 110 115 120 125
Days

Pr
ob

ab
ili

ty
 (p

er
ce

nt
)

Independent task duration
Correlated task duration

Expected duration
according to the
sum of task
 averages

Expected duration
according to the
simulation

Figure 4. Merging
paths. In the pres-
ence of uncertainty,
the expected project
duration does not
equal the sum of the
expected task dura-
tion in the critical
path.

76 Computer

of code produced, discovered errors, or pages of
written documentation—the output rate does not
remain constant through the task’s duration. The
output rate more closely resembles the S-pattern6-10

shown in Figure 5. This pattern, typical of many
intellectual activities, is explained by the many
actions and processes such as learning, team for-
mation, work reviews, and corrections that occur

at the beginning and end of a task, which consume
time but do not contribute directly to the measured
output.

Regardless of the factors behind this effect, it
occurs so commonly that it even has a name: the
90-percent-complete syndrome. Ignoring this fact
and extrapolating completion dates from the rates
of progress observed through the half-life of a task
using a straight line leads, almost invariably, to the
announcement of optimistic completion dates that
are never met. Figure 6 shows the error incurred
by using a linear forecasting model instead of the
S-curve paradigm.

SPID APPROACH
Figure 7 shows the SPID project model, which

entails increment planning, system engineering, sys-
tem architecting, and two or more development
increments.

In the increment-planning task, statistical tech-
niques break down the project scope into a series
of development increments in such a way that it is
almost certain that all requirements allocated to
the first increment will be implemented on time,
that there is a fair chance to implement those allo-
cated to the second increment, and so on. The sys-
tem-engineering task employs requirements, value,
and tradeoff analysis from a user perspective to set
the project’s priorities. The system architecting task
creates the solution’s general form, including the
interface definitions and the analysis of dependen-
cies between requirements.

All three activities take place concurrently to bal-
ance what the user needs and wants with what
could be done from a technical perspective. Each
development increment is a self-contained minipro-
ject. SPID does not impose any particular approach
beneath this level, which means that the team can
organize development according to a waterfall
model or an iterative cycle according to what is
most appropriate for the project. A buffer that
absorbs any overrun in their execution isolates all
but the last increment from the project delivery
date.

During execution, the team uses models to fore-
cast work progress that more closely resembles the
way people work than simply extrapolating from
last week’s progress reports. As Figure 8 shows, the
team uses the output from the models to forecast
completion dates and to take corrective action if
necessary. The team doesn’t start working on one
increment until it completes the previous one. This
prevents the team from wasting time developing
things they might never finish anyway.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9
Week

Pe
rc

en
ta

ge
 c

om
pl

et
e

Figure 5. Example of a production task for which the output does not grow at a
constant rate. At the peak of productivity, between weeks three and five, the per-
cent complete soars 20 percent in just one week. Toward the end of the task, it
takes significantly more time to go from 80 percent to 100 percent complete.

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9
Week

Pr
od

uc
tio

n
un

its

"S" curve
Linear

Figure 6. Linear versus “S” forecasting. If the assumed task output is 250
production units, the linear projection forecasts the task’s completion in week
seven; the S curve, on the other hand, projects completion in week nine.

Increment planning

System engineering

System architecting

Development
increment 3

Development
increment 1

Development
increment 2

Buffer 1

Buffer 2

Figure 7. The SPID project model. All increments (but the last) are isolated from
the project delivery date by buffers designed to absorb most overruns.

March 2002 77

Project planning
Once the development team establishes the feasi-

bility of its project, it defines the duration of the
development tasks in terms of their best, most-likely,
and worst-case scenarios as a function of the incre-
ment’s scope. The next step is to adjust the content
of the first increment so it will have a high (roughly
95 percent) probability of being completed in the
allotted time. Third, the team reschedules the tasks
using the duration that corresponds to a 50-percent-
on-time probability, allocating the difference be-
tween the high and low confidence dates to a buffer.
Finally, the team plans the next increment using the
length of the buffer as the time allotted. The process
is repeated for as many increments as the project
includes. Figure 9 illustrates the overall process. The
probabilities and target dates could be calculated
manually or by using one of the many commercially
available project simulators.

In selecting requirements for each increment, the
team must consider the need to provide function-
ally complete subsets to the user and the technical

dependencies that exist between them. Table 1
shows the approximate probabilities for delivering
the content of each increment when using SPID.

Although the specific techniques for estimating
the duration of each increment development
depend on whether the development team uses a
cost model, an expert approach, or a Delphi pro-
cess, including all reasonably expected completion
dates between the minimum and maximum dura-
tions is crucial. If the minimum and maximum
durations do not represent realistic alternatives, the
whole exercise is futile. In the case of a parametric
cost model like Cocomo, developers could do this
by changing the value of key cost drivers. In the

Table 1. SPID success probabilities.

Increment Calculation On-time probability
1 As planned 95.0 percent
1 + 2 0.50 * 0.95 ˜ 47.5 percent
1 + 2 + 3 0.50 * 0.50 * 0.50 ˜ 12.5 percent

Work processes
(System engineering,

development
integration)

Forecast
completion

date

Underlying
process model
for the activity

Adjust plan

Figure 8. The SPID
control model. The
development team
uses the model out-
put—rather than
simply using the
previous week’s
progress reports—
to forecast comple-
tion dates and take
corrective action if
needed.

Requirements

Select priority
n requirements

Plan increment n
at 95 percent
confidence

Time allotted

Reduce scope
increment n

Schedule task
increments at 50

percent confidence

Set buffer size and time
allotted to project target date

and increment completion date
at 50 percent

 Buffer n

No

Yes

Plan next increment

Does it fit the
time allotted ?

Figure 9. The SPID
planning process.
The steps in the
process are re-
peated for each
increment the pro-
ject includes.

78 Computer

case of a Delphi process, this requires recording the
optimistic and pessimistic estimates, not just the
converging value.

Project control
Time-bound projects provide little room for recov-

ery, which means that once a problem manifests
itself, it is almost too late. Controlling a project in
these circumstances requires a mechanism that can
identify the early signs of delay, minimize false
alarms, and minimize disturbances to ongoing work.

The critical chain approach exercises project con-
trol by monitoring buffer consumption, but SPID
updates the buffers with the estimates at comple-
tion of the individual tasks. To compute these esti-
mates, the team could, for example, fit a Rayleigh
curve to the progress reported and then project it
into the future. Figure 10 illustrates the overall
process.

Using buffers to monitor buffer consumption
helps isolate the development team from overre-
acting to small variations and prevents false alarms
that disturb the ongoing work. If replanning is
needed, the team should take into consideration
whether the underlying factors that affected the
current increment’s development will have an ongo-
ing effect in the next increment. If so, the team
should make appropriate cuts and not base its
entire recovery strategy on the belief that it will do
better next time.

REWARDS AND RECOGNITION
How can all project stakeholders ensure that the

development team will apply their best effort toward
implementing all requirements rather than just get-
ting by with implementing only the requirements in
the first increment? The answer lies in the rewards
and recognition system. Whether employee rewards
or price incentives in contracts, the incremental
model provides clear criteria for evaluating perfor-
mance.

No reward is associated with delivering the first
increment. All team members simply do their jobs.

Subsequent increments result in increased recogni-
tion of the extra effort put into the task. The on-
time probabilities shown in Table 1 provide a
means for calculating the reward’s expected value.
This calculation is important because a large
amount—with a very small probability—will result
in a low expected value. In this case, the team mem-
bers might perceive this reward as a lottery they are
unlikely to win; consequently, the reward loses
much of its motivation value.

As an example, a $5,000 reward for “Increment
2” has an expected value of $2,375. Applying the
same amount to “Increment 3” has an expected
value of $625. Clearly, the motivational value of
the reward is not the same in both cases. The same
ideas could be used in pricing a contract or in a bid-
ding process. Delivering the requirements included
in the first increment will result in the contractor
receiving a nominal fee, while delivering the re-
quirements included in the other increments will
entitle the contractor to premium payments.

I n addition to bringing together several existing
project management techniques, SPID also pro-
vides a decision rule to calculate increment size,

a reward model based on the expected value of the
increments, and a recommendation to track the pro-
ject based on forecasts rather than on actual progress.

SPID’s basic premise is that businesses are better
off when they know what they can expect than
when developers promise them the moon but offer
no credible assurances about when they can deliver
the project. SPID recognizes that in any develop-
ment project, hundreds of things can go right and
thousands of things can go wrong; SPID makes
these factors an intrinsic part of the planning and
control processes. �

Acknowledgments
I thank Tamara Keating, Ericsson Research

Canada; Alain Abran, University of Quebec at

Replan current
increment

Units depend
on task being
monitored

Work
performed

Forecast task
completion

date

Performance
baseline

Buffer n

Overrun
+ 25 percent

Overrun
+ 50 percent

Replan next
increment

Adjust
buffer size

Replan current
increment

Figure 10. The SPID
control process.
SPID exercises pro-
ject control by
updating the buffers
with estimates at
the completion of
individual tasks.

Montreal; and Raul Martinez, RMyA, for their
assistance in preparing this article. I also thank the
anonymous reviewers for their helpful comments
and insight.

References
1. E. Goldratt, Critical Chain, North River Press, Great

Barrington, Mass., 1997.
2. R. Newbold, Project Management in the Fast Lane,

St. Lucie Press, Hampton, N.H., 1998.
3. S. McConnell, Rapid Development: Taming Wild

Software Schedules, Microsoft Press, Redmond,
Wash., 1996.

4. N. Pisano, “Technical Performance Measurement,
Earned Value, and Risk Management: An Integrated
Diagnostic Tool for Program Management,” http://
www.acq.osd.mil/pm/paperpres/nickp/nickpaso.htm
(current Feb. 2002).

5. S. Grey, Practical Risk Assessment for Project Man-
agement, John Wiley & Sons, New York, 1995.

6. K. Pillai and S. Nair, “A Model for Software Develop-
ment Effort and Cost Estimation,” IEEE Trans. Soft-
ware Eng., vol. 23, no. 8, 1997, pp. 485-497.

7. L.H. Putnam and W. Myers, Measures for Excellence:

Reliable Software on Time, within Budget, Prentice-
Hall, Upper Saddle River, N.J., 1992.

8. J. Martino, Technological Forecasting for Decision
Making, McGraw-Hill, New York, 1993.

9. E. Miranda, “The Use of Reliability Growth Models
in Project Management,” Proc. 9th Int’l Symp. Soft-
ware Reliability, IEEE CS Press, Los Alamitos, Calif.,
1998, pp. 291-298.

10. J. Gaffney, “On Predicting Software Related Perfor-
mance of Large-Scale Systems,” CMG Proceedings,
Philadelphia, 1984.

Eduardo Miranda is a senior specialist at Ericsson
Research Canada and an industrial researcher affil-
iated with the Research Laboratory in Software
Engineering Management at the University of Que-
bec at Montreal. His research interests include pro-
ject management, estimation techniques, and
software measurement. He received an MEng in
engineering management from the University of
Ottawa, Canada, and an MSc in project manage-
ment from the University of Linköping, Sweden.
Miranda is a member of the IEEE Computer Soci-
ety and the ACM. Contact him at eduardo.
miranda@ericsson.ca.

IEEE Distributed Systems Online brings you peer-reviewed features, tutorials,
and expert-moderated pages covering a growing spectrum of important
topics, including

❐ Dependable Systems ❐ Mobile and Wireless

❐ Distributed Agents ❐ Security

❐ Middleware ❐ and more!

DS Online features a new design, and it will continue to provide news, research
from the trenches, book reviews, and more.

To keep up with all that’s happening in distributed systems, check out

http://dsonline.computer.org/

DS Online
will supplement

the coverage in IEEE

Internet Computing

and IEEE Pervasive

Computing.

Each monthly issue

will include links to

magazine content

and issue addenda

such as source code,

tutorial examples,

and virtual tours.

RELAUNCHED IN

JANUARY 2002!

To get regular updates, e-mail dsonline@computer.org

