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In recent works on structured development of real-time
systema (1,21, the need to capture control and timing information has
been widely acknowledge. This has led to the introduction of control
tranaformations and control flows into data flow models.

The tools sugested to specify control transformations sre
state-transition diagrams in case of sequential logic and activation
or condition tables for combinatorial logic. These tools, though
ugseful, are not enough when control transformations deals with several
tasks evolving simultanecusly either from the system or the user point
of view, as we will see in the next examples.
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fig. 1 A simple system
Figure 1, showns a simple system compaosed by two data
crangsformations and one control transformation. The data entry

function stores the data entered thru the console shown in figure 2.
Function "F1" gprocesses this data and displays the rsults on the
console display. The console control transformation,implements the

console logic responsible for the activation/deactivation of the other
functions.

Having just one function to represent, the consocle controtl
transformation can be conveniently specifted by means of the
state-transition diagram of figure 3; but if we introduce a second
function paralelism arises from the user point of view, as he can load
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fig 2. The system consocle
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and execute the functions in the order he

; wishes, becoming the
state~transition diagram that of figure 4.
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fig 3. State-transition specification for a console with one function

Generally speaking, combining n state-transition diagrams with
k states each, results in a diagram with Ot(k»#n) states. This
ombinatorial explosion could be avoided using auxiliary variables teo
comunicate independent subsystems as in figure S, but this reduces Lhe
readability and the graphic nature of the model.

2. Specifying thraough Petri Hets

Figure &, shows the same specification by means of Petri nets.
Notice that, in thiws case, when a new function is added to the console
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the number of places and transitions O(n}.
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Thus, complexity of representation grows lineary being

logic augmented only by a replica of the subnet
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F2 - FLDFL H1%0F2 F2 S. Abbreviations and Extensipns to Petri Nets
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An  example of abbreviation is the coloured net of figure 7. 1a
this case the diferentiation of tokens by means of "colours® wich
fig. 5 Using auxiliary variables in state-transition diagrams correspond to the function keys selected,

complexity independ

ent of the numbar of keys in the cons

leads to a representation

ole.
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7 Console logic specification using & coloured net
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fig. 8 Processor model for a real-time system

Previous example, has shown the need to keep track of several
simultaneous events because of the design of the man-machine
interface. In figure B example, paralelism arises from the existence
of multiple processors in a system and multiple tasks within each

processor.

To specify the bus access control logic of one processor we
could use either state-transition diagrams, figure 9.a, or Petri nets,
figure 9.b, but if we want to model all the bus controllers linked to
each other, we must resort to Petri nets, as done in figure 10,
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The real-time executive has to deal

with tasks runing at
diferent priority levels, keeping information about active, preempted
and interruptable tasks. The use of prioritized nets, leads to
simple specification, figure 11, of this relatively camplex
transformation.
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11 Real-time executive

fig.
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4. Conglusions
The examples presented have shown that some control
transformations are not conveniently and even theoretically
specifiable in terms of state-transition diagrams, and how Petri nets

can help in some o©f these
tools arise from two fagts:

situations. The differences between these

- In Petri nets, system state is represented by the
distribution (marking) of tokens into the places
of the net, and not by the places itself, as is
the case with the nodes of the state-transition
diagram.

- More powerful primitives allaw synchronization to
be specified and abbreviations and extensions to
nets permit more condensed specifications to be
Wwritten.

Furthermore the symbolic execution of the transformation schema
€11, a topic not considered here, is facilitated if control
transformations are specified using the Petri net approach.
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