P e

ACM SIGSOFT

Sogciiying fontrol transformations through Petri Nety

Eduardo Miranda, EBAl (Argentine-Brazilian School of Informaticw)

r ign

In recent works on structured development of real-time
systema (1,21, the need to capture control and timing information has
been widely acknowledge. This has led to the introduction of control
tranaformations and control flows into data flow models.

The tools sugested to specify control transformations sre
state-transition diagrams in case of sequential logic and activation
or condition tables for combinatorial logic. These tools, though
ugseful, are not enough when control transformations deals with several
tasks evolving simultanecusly either from the system or the user point
of view, as we will see in the next examples.

| l result
data base g F1

consele data.key

L 4

;
t L}
1T 1]
t 1
L} 1
i N | A enable/disable
1
i { console § '
Levaverseevarasanacs = emasescarrecsvesaene 4
{ contral |
consoll.cnntrg!:kgg.‘\- -‘}
fig. 1 A simple system
Figure 1, showns a simple system compaosed by two data
crangsformations and one control transformation. The data entry

function stores the data entered thru the console shown in figure 2.
Function "F1" gprocesses this data and displays the rsults on the
console display. The console control transformation,implements the

console logic responsible for the activation/deactivation of the other
functions.

Having just one function to represent, the consocle controtl
transformation can be conveniently specifted by means of the
state-transition diagram of figure 3; but if we introduce a second
function paralelism arises from the user point of view, as he can load

SOFTWARE ENGINEERING NOTES vol 14 no 2

Apr 1989 Page 45

OOO®
OO
OO
O @ @

fig 2. The system consocle

PISPLAY

and execute the functions in the order he

; wishes, becoming the
state~transition diagram that of figure 4.

:1 data entry mode l

F1
l enable data entry F1

~ » loading Fi
¥l 1 Hn
PEN/EXE enable data entry FI disable data entry F1
data loaded F1
1 VSP/DE twnmn

l 17

Fl TR

enable F1

disable It

fig 3. State-transition specification for a console with one function

Generally speaking, combining n state-transition diagrams with
k states each, results in a diagram with Ot(k»#n) states. This
ombinatorial explosion could be avoided using auxiliary variables teo
comunicate independent subsystems as in figure S, but this reduces Lhe
readability and the graphic nature of the model.

2. Specifying thraough Petri Hets

Figure &, shows the same specification by means of Petri nets.
Notice that, in thiws case, when a new function is added to the console

SOFTWARE ENGINEERING NOTES vol 14 no 2

ACM SIGSOFT

the cantroling
attending “F1*.
the number of places and transitions O(n}.

is
Thus, complexity of representation grows lineary being

logic augmented only by a replica of the subnet

data entry
mode

Apr 1989 Page 46

g

BSP/EXE
» 3 - I
[data entry wode j e enabie :.‘nhle
‘ F l enable de F2
PSI/ENE iﬂ T 3 iFZ $FZ —
i able
disable de F1 enable de Fl disable de F2_ | en Fl - -
data loaded FL data loaded F2_ j4—— Lol Cisable
l f2 lﬂ.._.__ BSP/IXE Gt
PSIVEXE enable de F2 enable de Fi Joaded
Fl4F2 load\nq F2481
luadmg 7] a) tonsole with ons function
L Fi execute node +— enable de F2 ena.ble de R} —b@ I
F2 .
l 71 msme fo 12— lna.ded norz 1 = '
enable Fi
~ T datx ent
Sesting 7 /o e de Btf [eecuting 12 i e rasgue
‘ r¥ le FI = r -
disable disabie 12 ‘ n l Al n__ o im n __J
L. —_ [———b o
ennble F2 enable FL disable T1 disable ol :'g“bl
'—-—-l executing F2 uunu!ins F1 '—-——
executing
. . o Ff e F2
flg. 4 State-transition specification for a console with two functions L_‘j’_ﬂ;,' disable
DSP/EXE
’ { I b) console with two fungtions
> erie i]
———) fig 6. Petri net specification for console logic
F2 - FLDFL H1%0F2 F2 S. Abbreviations and Extensipns to Petri Nets
Fe P .
enable de F1 |enable de F2 Sisable Fi enable F1 enakle F2 disable 2 Th ab ‘P
ﬂ &i ahl de F2 DH Q-Ehlse DF2 4 false @ use of abbrevistions ang extensions o etri nets, further
g}"“' d' 0F2 <+t simplifies the specification of control transformatons, satisfying the
criteria that an effective and. verifiable communication shoul o
l executing ¥l] [exe:uting Fe I prevail in such specifications.
hwhn! i
An example of abbreviation is the coloured net of figure 7. 1a
this case the diferentiation of tokens by means of "colours® wich
fig. 5 Using auxiliary variables in state-transition diagrams correspond to the function keys selected,

complexity independ

ent of the numbar of keys in the cons

leads to a representation

ole.

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 14 no 2 Apr 1989 Page 47

DSP/EXE
| S

gy me
, |

wavte | nable

enanle o tHo "

1oading exscuting
P o

Tate T4 = B
i isable
(Fx} denotes a token with
data the "calowr” of the
lgaded selected key.

7 Console logic specification using & coloured net

fig.
a) processor configuration
processsr
1
taken ¢
1}
—
entrolled
----------- Plsusten
TN 77N
3
! ! 1 Irea ! ») pracessar internals
Ptimgp femeesecmmenteoeeo Ol tine 1
t i fexecutive §

L # sof tware % \"u-nﬁ/

vt
hardware ¥ v + renable/disable interrupts

o 1+ ndone token
foremra e
1
bus request
bus granted
P: suspend/reswee §- oo rma e # hardware®
1: trigges _busrtluse

» sof tware %

global memory

fig. 8 Processor model for a real-time system

Previous example, has shown the need to keep track of several
simultaneous events because of the design of the man-machine
interface. In figure B example, paralelism arises from the existence
of multiple processors in a system and multiple tasks within each

processor.

To specify the bus access control logic of one processor we
could use either state-transition diagrams, figure 9.a, or Petri nets,
figure 9.b, but if we want to model all the bus controllers linked to
each other, we must resort to Petri nets, as done in figure 10,

i ot reired] ¢———

| arere Ll
token arrival a) state-transition diagramn

pass token Bus request
s release
) pass toksn
token arrival
bus granted
taken
rASS
%) token
¢ I:v arrival
; bus b) Petri net
bus bus granted
s reicase e pequest
fig. ¥ Bus access control specification

HTR T

s access control f bus access centrol 0

fig. 10 Linking bus controllers

ACM SIGSOFT

The real-time executive has to deal

with tasks runing at
diferent priority levels, keeping information about active, preempted
and interruptable tasks. The use of prioritized nets, leads to
simple specification, figure 11, of this relatively camplex
transformation.
mes {imer interrupt
H 4
—_— —
{48hz) [(2802} [(18h2)
ready processes
|
| * l enable 20hz
Trisger 48z task interrupts
114 K
¢ disable 28h
dene l N T —— interrupts
rigyer 4Ghz task
u&mdi%:tuk
i b I enable 18k
d taterrupts
Trigger 48hx fas
Suspend 18hz tas I l disable 19h
SIQ—-———- interrupts
Trigger 28hz task
bnol
3 &
Irigger 28hz task
Sﬁsgend L8hz task
H L
done IQ—-— 1
Irigger 18hz task
18hz 28hz
C CPU suspended
avaitable racesses
foon)
Pesune m— Resume
thte: A nunber besife a transition 18h2 fdone 28z
- indicates its L;rlng priority,
one being the highest.

11 Real-time executive

fig.

SOFTWARE ENGINEERING NOTES vol 14 no 2

Apr 1989 Page 48
4. Conglusions
The examples presented have shown that some control
transformations are not conveniently and even theoretically
specifiable in terms of state-transition diagrams, and how Petri nets

can help in some o©f these
tools arise from two fagts:

situations. The differences between these

- In Petri nets, system state is represented by the
distribution (marking) of tokens into the places
of the net, and not by the places itself, as is
the case with the nodes of the state-transition
diagram.

- More powerful primitives allaw synchronization to
be specified and abbreviations and extensions to
nets permit more condensed specifications to be
Wwritten.

Furthermore the symbolic execution of the transformation schema
€11, a topic not considered here, is facilitated if control
transformations are specified using the Petri net approach.

References:

1 - ESML: An Extended System Madeling Language Based on the Data
Flow Diagram, Bruyn, Jensen, Keskar, Ward, Software
Engeneering Notes, Jan 1988,

2 - Structured Development for Real-~Time Systems, Ward-Mellow Vol
I, I1, 111. Freqﬁi:e Hall 1986,

3 -~ Reseaux de Petri: Theorie et Pratique, Vol 1,
fMlasson 1983,

1l. G.W. Brams,

