An lllustrated Introduction to the Classification
Tree Method

Eduardo Miranda, PhD.
CMU/MSE
MSE/NIST Seminar
June 7th, 2011
Pittsburgh, PA



The C

assification Tree Method illustrated

Test Object 1

Test all pairs = {bd, cd,
ae, be}
Test for b = {bd, be}

bo [o)

Eduardo Miranda © 2011 2



1) Select test
object

The Classification Tree Method in practice

Large
Blue

Circle

Description

Subject
TiEquaIence

[TesiName
T quiaence Testcae T

Shape: Trangle
s Equiatera
oo R
Backyound: Lght

[FEqmaee

g Tost

Shape Trangie
s sosceles
Coor Red
Background: Light

e

e Testcase

(AT Testcase 1

[ATTestcase 2

(A Testcase 3

[ATTestcase &

[ATTestcase s

(AT Testcase &

[ATTestcase 7

6) Export

2) Analyze

off

© Create new testcase group C Complement existing testcase group

velete | Wew | ok | cancel | apply | Generatet

Easifa P w
----- x
Rules And Naming eonvention
| ~ | <ot tiame =l
= T T
- - — | —— ——
T T T 4 |Eiguce * Lighting * Backeround;
: + —
rs L 1
o) Of

Ecuigterd Blue Large

3) Model

Dependency Editor

Rules And Naming convention

'|0n\y small Red Triangles dISholt Name

Operators
| w0 | wwo | or | wr | wmr | %
S | v | |

- Status of dependency rule
¥ Rule is active

[Tnanglr AND Red => Small|

| || || NS | e

4) Constrain

5) Generate

Eduardo Miranda © 2011

3



The Classification Tree Method in practice

1) Select test
object

2) Analyze

" Note: Step 1 is not missing, it is just easier to understand it if step 2 is explained first

}s‘_m'gt Description [TestName StepName [Description (Desis
Qe Tt aence Terease T T Shepe: Trarge

S Eote % Dependency Editor x|
TEqunalence z Shape: Trangie rRu\es And Naming |
e |[0n\y Small Red Triangles _~|[Short Name ﬂl

e e Testcase g Shape:

AT (AT Testcase 1 T Shape: Trange

ao | mwo | or | wr | xor | w |
= [ Twor | )

= |
/ Status of dependency rule
[mem |

[mngg AND Red => Small|

mml_g__]cmm

AT [ATTestcase 2 z

o [ATTesicase s 3 S

T [ATTestcase & O e

AT [ATTestcase s 5 Shape: Trangle

Background:Dark 5 A o
a e g Shoge Trang

T [ATTestcase 7 7 Shape: Trangle

xi :

e 4) Constrain

I_gsnm«ma =]
- | + twowise | threawise

| — |

6) Export

& create now testcase group (~ Complement exting testcase group 5) Generate
oelete | Hew | ok | concel | apply | Generstet

Eduardo Miranda © 2011 4



Machine vision subsystem: Identifying test-

FE|EV3 nt a%pe(:ts Is the capability of the system
affected by:
O

the lighting
@ conditions?

The vision subsystem shall classify
figures of different: the conveyor
A background?

Large

—————

the speed at

Col

o ® = which the
4 ______ [ figures pass
Shape A in front of

dapted f . Groch , i t h
GsianztiIasrsci’fri:a’\::oﬁr'l?rceetsr?zgg4-re5t ose Desien e Ca m e ra ?

Eduardo Miranda © 2011 5



Classification trees’ syntax & semantics: Root,
compositions, classifiers and classes

Modeling Allowed Allowed Test
entities Parents descendants | Selectable

Root

*Denotes the test object (TO)

*Consist-of relationship
*To model an aspect that is

*Root

*Compositions
Classifications

eComposition

Compositions broken down into other aspects *Composition e No
: .. *Classification
*To refine a value consisting of Class
several parts
*|s-a relationship
*To model an aspect that is “Root
e s partitioned into a collectively .
Classifications . *Composition *Class No
exhaustive and mutually
. *Class
exclusive sets of values
(equivalence classes)
To model equivalence classes
set of values that elicits the e eComposition
Classes ( Classification P Yes

same behavior from the TO) and
actual test values

eClassification

Eduardo Miranda © 2011 6



Machine vision system: Modeling test-relevant
aspects

Machine Vision System

Lighting

Background

/ Color
Triangle
Size

Circle Red

Green Small

Blue Large

Eduardo Miranda © 2011 7



Equivalence classes

ize
— Color
Small Large
Green
A figure is small if it is inscribed in a Each color should be treated the
square area of 300 x 300 pixels same independently of the size
otherwise is large and shape of the figure

Shape

‘ All these are circles

Eduardo Miranda © 2011 8




Machine vision system: Partitioning test-
relevant aspects

[ Machine Vision System

Lighting

Background

\L, Color
Triangle

Size

Circle Red

Is-a

Blue Large

Equilateral

Isosceles

Scalene

Eduardo Miranda © 2011 9



What happens if the figure is not of the right
shape or the right color?

Machine Vision System

Invalid/\
Valid
|

Attributes

Small hexagon

Large irregular shape
Wrang Color
Triangle
| Circle \ Red
Smﬁ\

Square Green

Equilateral

Isosceles \

Scalene

Blue Large

Eduardo Miranda © 2011 10



Machine vision system: The complete picture

e

| Machine Vision System |

Invalid
Background
Valid Dim
| Exemplars |

/ Bright  Light
Attributes

Small hexagon

Dark

Large irregular shape

Wrong Color
Triangle

=

Circle

Square

Equilateral

Isosceles

Scalene

Note: Not all aspects and equivalence classes have been pointed at

Eduardo Miranda © 2011 11



Count function

The count function shall provide a tally
of the number of occurrences of a

given value in an array Do the number of elements in

the array have any bearing in the
processing?
count (IN array: searchedArray, Does the function correctly tally

IN string: countWhat) the number of occurrences of the
searched element in the array?

Does the order of the elements
in the array affect the results?

Does it work with numerical
’values? Characters?
Alphanumeric?

o

What does it happen if the
countWhat string is null?



Count function: Classification tree showing
potential conflicts among equivalence classes

Array size

No of occurrences

Content type

More thag \ Ascending

Descending
Numeric

Unsorted
Alpha

Identical Elements
Alphanumeric

countWhat

String length

String type

Zero
Same as target
More than one Different from target

Maximum length

Eduardo Miranda © 2011 13



A different partition for the Count classification
tree

SecondCount

SearchArray

Content Type String length

Zero elements

one Numeric Zero
Same as target
More than one Alpha
No Of Ocurrences More than ane Different from target

Alphanumeric

Attributes
No Of Ocurrences

Maximum length

Zeé\

One

Ascending
More than one Descending

Unsorted

Eduardo Miranda © 2011 14



Document filing system

What happens if the length
of the document number is
more than 36 characters?
What is the minimum?

Docu-
ment
version

Lan-
guage
edition

Regis-
tering
office

Rev-
state

Lan-
guage
code

Variant
code

Decima
class

Class
prefix

Does the system do

XYZ

docu-
ments
made
for a

limited

Examples of document numbers could be

anything different with

123 these variants?

Indi-
cates
lan-
guage
edition

number from
registering office
(general docs)

Does the system do
anything different
based on the decimal
class of the
document?

109 21- ASB 501 04, Product Revision Informatioi
131 32 -ROF 137 5054/2, Manufacturing Specification
102 62-CAA 111 1305, Design Specification;
1050-EN/LZB 103 04, Description.

.

Eduardo Miranda © 2011 15



Document filing system: Classification tree with
relevant test aspects

Document number

Language edition

| Registering office

Document version |

| Class prefix |

Decimal class |

Individual number |

Variant code

Eduardo Miranda © 2011 16



The Classification Tree Method in practice

(acmre vmen sywer )

Large
Blue

Circle Eculaters e Large

1) Select test 3) Model

object 2) Analyze

}gv_\:l Description [TestName [StepName | Description

Qe MiEuvaence Tesiase T 1 Shepe: Trarge
« Equier

oot T Dependency Editor B bd|

= z Shape T [ Rules And Naming

Cor: Red
Background: Light Pk Ver o Creom Ve B |[0n\y small Red Triangles dISholt Name j|

TR T 7 e Pun: IREME D RREEA[CAd o QprtdE o e
ao | mwo | or | wr | xor | % |:
( D

AT (AT Testcase 1 T Shape: Trange

S| |

/ [ Status of rule
¥ Rule is active

[Tr{;.ng le AND Red => Small|

mml_m_]cmm

AT [ATTestcase 2 z Shape: Gicle

o [ATTesicase s 3 Shape: Square

T [ATTestcase & O Shape: Trangle

AT [ATTestcase s g Shape: Trangle

o [ATTesicase s % Shape: Trangle

T [ATTestcase 7 7 Shape: Trangle

s x| :
e 4) Constrain

[ - [tz 7]

£ - |_ a0 | twowise | threawise

T —— | ———

6) Export

s commeers | 5) Generate
_oolte | Wew | ok | concel | ey | Generater

Eduardo Miranda © 2011 17



Implications of test object selection on aspect

relevance
End-to-end capability

A

- =~ Component

s A
@ j """ .on A
o |
°AEDA. Image Image Analyzer Displa
Toa Acquisition Processing Y play

Eduardo Miranda © 2011 18



Is “Replace” a test object?

Find what: Find Next

2%

: = rroner |
Replace with: Close |
] LI Replace
[~ Match case
[~ Find whole words only Rephcaal |

Function Inputs
NoOfOccurrences
(Subsing]
None
e
one Yes FindWhat

Capitals
MoreThanOne No

Find Next
NotApplicable
Replace
Initial Applicable
Yes
Mixed

No Yes

Replace All \

Close

ReplaceWith

No

No

Length
CapitalLetters

ShorterThanTarget
SameAsTarget Yes

LongerThanTarget No

Eduardo Miranda © 2011 19



The “Replace” form encompasses multiple
functionality —

2| o
Find what:
Replace with: Slose |
I LI Renlace |

[ Match case

|
[~ Find whole words only Replace All

\%
Replace All

None
| Revfac
One Yes MatchingString
Replace All
MoreThanOne No One
TwoOrMore Initial
ShorterThanTarget
Maximum Mixed
SameAsTarget Yes
No
LongerThanTarget No

Eduardo Miranda © 2011 20



The Classification Tree Method in practice

y GO

(acmre vmen sywer )

Large
Blue
Circle

Ecuigterd e Large

1) Select test 3) Model

object 2) Analyze

[Subect Description [TesiName StepName |Description (Desi
TEcuneionce MiEuvaence Tesiase T 1 Shape: Toange

£ Dependency

[FEqmaee z Shape Trangie

e e Testcase g Shape:

(AT Testcase 1 T Shape: Trange

. B -

[ATTesicase s 3

[ATTestcase & O Shape: Trangle

[ATTestcase s 5 Shape: Trangle

[ATTesicase s % Shape: Trangle

[ATTestcase 7 7 Shape: Trangle

€ Test case Generator Editor x|

Rules And Naming convention

[ - [[scriteme <]

. T s | owowse | threewse
| —— ——

4) Constrain

6) Export

) O]

s commeers | 5) Generate
_voote | tew | ok | conol | spay | Gonorater

Eduardo Miranda © 2011 21



Count function: Classification tree showing
potential conflicts among equivalence classes

[ Array size |

[ No of occurrences

Order

e Dependency Editor il

—" Rules And Naming convention

More than one Ascending |Constrain L||5h°“t PP Ll
More than one D' -operators
AND NAND OR NOR XOR % |
= <« NOT ( )
~Status of dependency rule ur
¥ Rule is active

(Zero elements => None) AND (One element =>
IMore than one);|

Detete | mew | ok | Close apply |

Eduardo Miranda © 2011 22



Conflicts are flagged

=l Al
@ Al Testease 1
@ All.Testease 2
- @Al Testcase 3
~ @ All Testcase 4
@ All.Testcase 5
~@ Al Testcase 6
~@ All.Testcase 7
@ All.Tesicase 8
@ AllTestcase 9

~@ All Testcase 10
@ All.Testease 11

@ All.Testcase 13
~@AllTestcase 14
@ AllTestcase 15
~@ All.Testcase 16
@ AllTestcase 17
@ Al Testcase 18
@ Al Testease 19
~ @ AllTestease 20
@ All.Testease 21
@ All Testcase 22
@ All.Testease 23
~@ AllTestcase 24
@ All.Testcase 25
All Testcase 26
~@ AllTestcase 27

Zero elements

No of occurrences

countWhat

String lenath

String type

One element None
Content type
More than one One Ascending One Same as target
More than one Descending Numeric More than one Different from target
Unsorted Maximum length
Identical Elements Alphanumeric
N

Eduardo Miranda © 2011 23



The Classification Tree Method in practice

(acmre vmen sywer )

Large
Blue
Circle

Ecuigterd e Large

3) Model

object 2) Analyze

_ Dependency Editor i il
rRu\esAﬂﬂNnmlr\g
L |[0n\y5mallRedTr\angles ﬂlsholtuame ﬂl
o
Heser ao | mwo | or | wr | xor | w |
= P = T
- Frmcaan |
=
-. e
cia
-- ———
Mrm

w e

4) Constrain

6) Export
5) Generate

Eduardo Miranda © 2011 24



Generating test specifications / test cases

CTE Test case Generator Editor

Rules And Naming convention

| <o rome
— =

twowise threewise

( ) .

Figure * Lighting * Background:

& Create new testcase group ¢ Complement existing testcase group

Delete | New [ Ok | Cancel I Apply | Generate !

£ TrEquivalence

Al
@ All.Testcase 1
@ Al Testcase 2
@ Al Testcase 3
@ Al Testcase 4
@ All.Testcase 5
- @ Al Testcase 6
@ Al Testcase 7
@ All.Testcase 8
@ All.Testcase 9
@ All.Testcase 10

Triangle

Equilateral

Isosceles

Circle

Scalene

[ Machine Vision System l

Background

Dim
Bright Light

Dark
Squarg Green Small

Blue Large

~@ TrEquivalence Testcase 1

@ TrEquivalence Testcase 2

@ TrEquivalence Testcase 3

nE .

&
& 144
406608606866 668§




Test specifications vs. test cases

e Test specification for the count function:

* Array
— Size greater than one
— Number of occurrences of counted string greater than one
— Unsorted
— Content alphanumeric

e Count what

— String of more than one character
— Same data type as array

e 2 test cases satisfying the same specification

n u n n

e (“world”, “mother”, “string”, “string”, “country”, “Sunday”);
“string”; count =2

° (lllst” , llbike”’ ll3rd”’ llbikeﬂ’ llSthI)’ ll6thii’ ll7th”’ llbikeﬂ’ llgth”);
“bike”; count =3



Two situations

e Case 1. When an input’s or environment
condition’s only test relevant aspect are its
values, its leaf classes could be made to
correspond to actual test values and directly
used to generate test cases

e Case 2. When the actual test value is the
result of the intersection of two or more
aspects the classification tree method will
produce specifications that the tester will use
in developing actual test cases



Case 2: A valid password is the result of 3 intersecting
separate aspects: Length, Numeric & Upper case character

Test case Generator Editor

UpperCase ~Rules And Naming convention

/\ /\ IA" LIIShort Name ﬂ

<8 Yes No Yes No = + e Gieeon |
>=8 ( ) l
Position = = =
[Positon| easach| Length * Numeric * UpperCase;
Begining InBetween End Begining InBetween End
o A
@ Al Testcase 1 ; I I : {+ Create new testcase group ¢ Complement existing testcase group
@ All.Testcase 2 t ‘—
-~ @ All.Testcase 3 & Delete l New | Ok | Cancel | Apply l Generate !
@ All.Testcase 4 T L 2
~@ AllTestcase 5 & T
@ All Testcase 6 ‘ o+
~@ Al Testcase 7 L ‘

‘t

~@ All.Testcase 8 —*

@ All.Testcase 9 + :
~@ All.Testcase 10 —-+ : . 4
@ All.Testcase 11 ‘ L

~@ All Testcase 12 L 2
~@ All.Testcase 13 ?

~ @ All.Testcase 14 & ! I »
3

I

~@ All.Testcase 15
~@ All.Testcase 16 —& ? L 2
~@ AllTestcase 17 -

- @ AllTestcase 18 .
~-@ All Testcase 19 —@ * & ’

@ All Testcase 20
@ All.Testcase 21
@ All.Testcase 22 o &
~@ All Testcase 23 & &
@ All.Testcase 24 : o
~@ All Testcase 25 :

~@ All Testcase 26

@ All.Testcase 27
~@ All Testcase 28 &
- @ AllTestcase 29

n

~@ All Testcase 30

Py
-
WA 3
E 3

@ All. Testcase 31 —’
~@ All.Testcase 32

T

Eduardo Miranda © 2011

28




The output from the tool is a specification the tester must
transform into actual test values before they can be used to test
the application

Subject |Description| TestName S Specification SHidec Test Case
Name Result
All All.Testcase 2|1.2 - Length: <8 Invalid ric3k

- Numeric: Yes o
- Position: InBetween
- UpperCase: No

All All.Testcase 3|1.3 - Length: < 8 Invalid Rag2u
- Numeric: Yes

- Position: InBetween
- UpperCase: Yes

- Position: Begining

All All.Testcase 4 (1.4 - Length: <8 Invalid maryY
- Numeric: No
- UpperCase: Yes
- Position: End
All All.Testcase 5(1.5 - Length: >=8 Valid 2Eduardo

- Numeric: Yes

- Position: Begining

- UpperCase: Yes

- Position: InBetween

All All.Testcase 6|1.6 - Length: >= 8 Invalid Jonathan
- Numeric: No

- UpperCase: Yes

- Position: Begining

A

All All.Testcase 7 |1.7 - Length: >=8




Case 2: The classes in the classification tree
correspond to actual test values

100 RMS ON POWER

bdbo

Control Panel

60RMS STANDBY TWEED Volume 1

MARK I 7
0

Switch 2
100 RMS
Switch 3
60 RMS on
\\
Standby Power
Tweed
= Twoway ——
~() TwoWay.Testcase 1 E ;
O TwoWay.Testcase 2

O TwoWay.Testcase 3 "
- TwoWay.Testcase 4 —@
O TwoWay.Testcase 5
~() TwoWay.Testcase 6 o
O TwoWay.Testcase 7
() TwoWay.Testcase 8 —@
O TwoWay.Testcase 9
= TwoWay.Testcase 10
- TwoWay.Testcase 11
(O TwoWay.Testcase 12 —@
- TwoWay.Testcase 13 @
() TwoWay.Testcase 14
- TwoWay.Testcase 15
() TwoWay.Testcase 16 &

P .

W W 3
*¢

—8-@
&

SEF A S P W ST P 1

R N

:

Eduardo Miranda © 2011 30




In this case the tool’s output are actual test cases that
could be fed directly to the application or implemented
through Junit or any other test harness

Tactraca 1A

1NN DNC

Nn

Dnrwwinar

Switch 1 | Switch 2| Switch 3 | Volume 1 |Volume 2
TwoWay
Testcase 1 100 RMS| On Tweed 5 0
Testcase 2 60 RMS On Power 9 1
Testcase 3 100 RMS| Standby| Power 1 10
Testcase 4 60 RMS | Standby| Tweed 0 5
Testcase 5 100 RMS| Standby| Tweed 10 9
Testcase 6 60 RMS On Power 1 9
Testcase 7 60 RMS On Power 10 10
Testcase 8 60 RMS | Standby| Power 0 0
Testcase 9 100 RMS| Standby| Tweed 9 1
Testcase 10 100 RMS| On Power 5 5
Testcase 11 60 RMS | Standby| Tweed 5 10
Testcase 12 100 RMS| On Power 0 1
Testcase 13 100 RMS| Standby| Tweed 1 5
Testcase 14 100 RMS| On Tweed 9 10
Testcase 15 100 RMS| Standby| Power 9 9
1

Eduardo Miranda © 2011 31



Metrics

Minimum number of test specifications (rows in the combination table) not test cases
— This criterion requires every single class in the tree to be selected in at least one test case

— The number of test specifications is equal to the largest number of leaf classes with a common
classification at the highest level

— The number does not take in consideration potential impossible combinations that would require
extra combinations to keep the required coverage

e More realistic estimate. The largest of:
— The product of the number of leaf classes up to the highest composition level
— The sum of all leaf classes
e Maximum number of test cases (All combinations as per tree construction)

— The maximum criterion requires every possible class combination to be selected in at least one test
case or test specification. It corresponds to the Cartesian product of all the leaf classes

— Its exponential growth makes it impracticable for most situations
e Combinatorial criterion
— This criterion corresponds to the t-wise combination of the number of classes
— An approximation to the total number of classes is given by the formula
t
[(]_[Largest(t,kl'kz‘__’kl) ki) lnll where [ > t is the number of lowest level aspects k,, k,, k, the number

of classes belonging to them and t the strength of the interactions (pair-wise, three wise, n-wise)



Other capabilities of the method not covered here

* Jest sequences
e Values transitions
e Timing



Questions?



Classification tree method

e Systematic technique for generating adequate test specifications from
explicit and tacit knowledge about a test object

— Identifying and documenting all test object’s test-relevant aspects

— Partitioning the values that characterize each test relevant aspect into disjoint
subsets called classes which will serve as a basis for generating test
specifications or test cases

— Generating test specifications or test cases for the test object

* Retrospective

— The Category-Partition Method for Specifying and Generating Functional Tests,
T. Ostrand & M. Balcer, 1988

— Classification Trees for Partition Testing, M. Grochtmann & K. Grimm, 1993,

— Test Case Design Using Classification Trees, M. Grochtmann, 1994
 Tools

— CTEXL

— CTE XL (Professional)

— Tessy
* Current usage

— Mainly automotive industry, where it originated at Daimler-Benz

— Telecommunications. Interfaces with TTCN-3



Inputs, environment and test relevant aspects

e |Inputs, aka parameters. Explicit inputs to a test object,
supplied either by the user or by another program

 Environment. Relevant conditions present at execution
time
* Aspects

— An aspect is any characteristic of an input or environment
condition that the test designer knows or suspects might
influence the behavior of the test object. Aspects include:

* Values — this is how most information is conveyed. However
beware of single values encoding different type of information
corresponding to different test-relevant aspect

* Multiplicity — a given value might be absent, exist once, exist more
than once, exist a minimum number of times, exist a maximum
number of times

e Sizes, lengths and sequences — the first, the second and the last
elements; the minimum and maximum number of occurrences,
the minimum and maximum lengths



Guidelines for selecting test objects

 The choice of test object largely determines
what aspects are relevant and which ones are
not

 The function being tested can be invoked by
methods consistent with the level of testing

* |ts output can be observed by methods
appropriate to the level of testing

o After producing the output the function
“rests” until its next invocation



Guidelines for selecting test-relevant aspects

 The aspect’s purpose is to document and guide
the analysis of the input domain by decomposing
it into independent factors. Aspects are
represented by compositions and classifications

 There is no unique criteria for choosing them, it is
not a mechanical task. Aspects sources include
— Specifications, if they exist, identifying how the

functional unit ought to behave with respect to some

characteristic of the parameter or environment
condition

— Common knowledge about what things may or ought
to be treated differently by an implementation

— Test catalogues



Guidelines for identifying equivalence classes

 The range of values a test-relevant aspect can
take is partitioned into equivalence classes
— |f necessary these classes can be further subdivided
— If necessary introduce a class corresponding to invalid

values (robust testing)

* Each class corresponds to a subset of values of
the aspect that should elicit an equivalent
behavior from the test object

 Under certain circumstances equivalence classes
can be refined into actual test values to support
the automatic generation of test cases



Introducing invalid values for robust testing

 Robust or negative testing is used to test error
or exception handling mechanisms

e Invalid values need to be considered when
dealing with data from external sources, when
creating reusable code and, depending on the
quality requirements of the application, even
when dealing with data from internal sources
(defensive programming)



