
Bridging the Gap Between Agility and Planning
Eduardo Miranda
This version: July 31st, 2020
mirandae @ andrew.cmu.edu
Carnegie Mellon University, USA

INTRODUCTION

Any team or ensemble of teams, whether traditional or agile, working in a project of any size or
consequence, needs a shared understanding of the work to be done, to guide everybody’s contribution
towards the desired outcome. This understanding will typically include [1] a vision for what the end
product should look like from a user as well as from a technical perspective, the work strategy, and a
schedule with dates for key events such as conferences, press announcements, for when major product
capabilities must come together, and target metrics such as performance, scale, or participation, must be
reached. The work strategy together with the key dates constitute the project’s high level or strategic plan.
Without such a plan, project members struggle with what to do next and stakeholders with what to expect,
when. Cohn [2], for example, suggests the use of a release plan, without which teams move endlessly from
one iteration to the next; Cockburn [3], a coarse-grained project plan, possibly created from a project
map or a set of stories and releases to make sure the project is delivering suitable business value for
suitable expense in a suitable time period; Highsmith [4], a Speculate Phase, in which a capability and/or
feature-based release plan to deliver on the vision is developed as well as a wave (or milestone) plan
spaning several iterations used as major synchronization and integration points; and the Scaled Agile
Framework [5] [6], a Program Increment Planning, in which all teams – and wherever possible, all team
members – attend PI Planning, where they plan and commit to a set of PI objectives together. They work
with a common vision and Roadmap, and they collaborate on ways to achieve the objectives.

What all these approaches have in common, is that the proposed plans are collaboratively formulated by
the team, not in terms of the tasks to be performed, but in terms of the outcomes the project must deliver,
e.g. a basic version of the app is released, and the relevant states the project must go through on its way to
achieve its objectives, e.g. the website information architecture is approved, a necessary piece of
hardware is made available to the project, and so forth. In other words, the plan outlines the chosen
strategy but does not dictate the myriad of tasks that ought to be executed to realize it, which will be
decided as work progresses. As outcomes and relevant states synthetize the results of the, usually many,
tasks necessary to produce or reach them, there will be fewer of them than tasks, making milestone plans
more robust, easier to produce and communicate than traditional activity based plans.

The Milestone Driven Agile Execution (MDAX) [7] described in this paper, see Figure 1, is a hybrid
software management framework [8] [9], where the empirical process control and the just-in-time
planning of tasks advocated by agile methods are retained, but the prioritization of the backlog is done
according to a milestone plan [10] [11], instead of the biweekly or monthly reactive concerns of the
product owner or the development team. Selecting work items from the backlog according to a plan adds
visibility, predictability, and structure to the work while preserving the adaptive advantages of agile
development. MDAX is method agnostic in the sense that the development approach, much like an app
running in a Java Virtual Machine, is not encoded in its mechanics, but rather in the plan that drives it.

Eduardo Miranda (c) May 2020 2

MDAX has three advantages over other methods. First, the above mentioned method independence,
which allows those adopting MDAX to choose the development approach that suits them best. Second,
the explicit consideration of the team capacity and availability in the planning process that results in
feasible sequences of work not only from a dependency perspective, but also from a resource point of
view. Third, a step by setp process requiring explicit inputs and estimates, makes the process more
traceable, teachable and repeatable, as the reader will have the opportunity to appreciate.

Since MDAX is basically a planning superstrucutre on top of Scrum, in what follows, we will focus on
what is novel or unique about the approach, assuming the reader has a basic understanding of Scrum,
which allows him or her to fill in the blanks in the cases where we have borrowed a established practice
or concept from it. The rest of the paper is organized as follows: In the Milestone Plans section, we will
introduce the concept of planning in terms of milestones instead of tasks. In the Work Package Schedules
section will explain how to depict the work spaces in which, the yet to be defined tasks, associated to a
milestones will be executed. In the MDAX Framework section, we will provide a detailed description of
MDAX in terms of its roles, activities, meetings, and artifacts. In the Visual Milestone Planning section,
we will explain the planning technique at the core of the MDAX approach. In the Milestone Planning
Example, we will walk the reader through the entire planning process, and in the last section, Conclusion,
we will provide a summary of the framework and its advantages.

Figure 1. Milestone Driven Agile Execution. Adapted from [7]

Eduardo Miranda (c) May 2020 3

MILESTONE PLANS

In Planning Extreme Programming [12], Beck and Fowler, state “Any software planning technique must
try to create visibility, so everyone involved in the project can really see how far along a project is. This
means that you need clear milestones, ones that cannot be fudged, and clearly represent progress.
Milestones must also be things that everyone involved in the project, including the customer, can
understand and learn to trust”.

This view, is in concert with that of Andersen [10], who defines a milestone not as the completion of an
activity, usually an especially important one, but as a result to be achieved, a description of a condition
or a state that the project should reach by a certain point in time. A milestone describes what is to be
fulfilled, not the method to fulfil it. This is what makes milestone plans suitable to act as guide posts while
preserving the just-in-time task planning nature of agile methods.

Figure 2 shows a typical milestone plan. As can be observed, a milestone plan is short, typically confined
to a size that will allow it to be grasped at once and written using a vocabulary a project sponsor can
understand. The plan comprises the sequence of states the project will go through, from its inception to its
successful conclusion, and not the activities the team needs to perform to achieve those states. For
example, the “UX Concept approved” milestone defines a state where the project team has presented an
idea that satisfies the needs of the sponsor and he or she has acquiesced to it. This is a relevant state
because once achieved, the team would have reduced the project uncertainty for itself and for the client.
Notice however, the plan does not stipulate how the team will get there. Will it build wireframe diagrams,
develop high-fidelity prototypes, make a PowerPoint presentation, perform user testing, or employ focus
groups? At some point, these issues will certainly have to be addressed by the team, but they have no
place in a milestone plan. This focus on states is what makes the plan robust, since independent of what
tasks are performed to get there, when, and by whom, the project sponsor would like to approve the
design concept before it is implemented and that, is unlikely to change.

The dependencies between milestones are “Finish to Finish” relations, meaning that if “Milestone B”
depends on “Milestone A”, “Milestone B” cannot be completed until “Milestone A” has been completed.
Finish to Finish relations are easy to spot and provide great freedom as to when the activities leading to
the realization of the milestone could start.

Milestones can be hard or soft. Hard milestones are milestones that, if not accomplished by a set date,
lose all or most of their value, result in severe penalties or might induce irrecuperable delays in the project
itself . For example, the date a government resolution that the system under development is supposed to
address goes into effect, and the start of the holiday shopping season, would be hard milestones a project
might need to satisfy. The provision, by an external party, of a critical item necessary for development
beyond a certain due date, would be an example of an event causing an irrecuperable delay to a proyect.
Soft milestones, on the other hand, have completion dates that result from the planning process. They
might be associated with penalties or other liabilities after a statement of work is agreed upon, but in
principle they are discretionary.

Eduardo Miranda (c) May 2020 4

WORK PACKAGE SCHEDULES

Associated with the milestone plan will be a work packages schedule (see Figure 3), which defines a
number of time boxes within which, all the work associated with a given milestone, called its work
package, will have to be executed for the plan to hold.

Within the constraints imposed by the hard milestones’ due dates and the dependencies identified in the
plan, the work packages schedule will be constructed according to the team and business timing and
staffing strategies, such as we need to do this before that, do as much work as possible at the earliest, start
slow to minimize risk and then aggressively ramp up, maintain a constant workforce, do not exceed six
months, do not use more than five people, and so on. In constructing it, we will assume, the distribution
of competencies in the plan matches the work’s needs. This is a sensible assumption in an agile context
that assumes either generalists or balanced, cross-functional, teams. In cases where this assumption would
not hold, it would be possible to break the resource dimension into competency lanes and assign the
corresponding effort to each lane. The same approach could be used to scale up the method to be used in
projects with multiple teams.

To execute the milestone plan, the project team progressively refines the elements of the work package
into the tasks necessary to realize them within the time boxes established by the work packages schedule.
The work to be taken on in a given iteration is thus dictated by the work packages schedule derived from
the milestone plan the product owner helped to create and not by biweekly or monthly, sometimes
whimsical, concerns. As work progresses, the plan is updated to reflect new circumstances arising from

Figure 2. A typical milestone plan showing due dates, responsibilities, and milestones’ descriptions.
Adapted from [18]

Eduardo Miranda (c) May 2020 5

the work completed or from changes in the project context, but since milestones are basically states or
goals to be attained, and the plan does not specify when tasks must begin, how long they should take, nor
who should perform them, it tends to be pretty stable.

THE MDAX FRAMEWORK

This section describes the MDAX framework (see Figure 4) and explain its working in terms of its roles,
artifacts, activities, meetings, and workflow. Activities are tasks performed once at the start of the project
or as new knowledge or circumstances require it, while meetings are recurring tasks that must be carried
out every iteration or at other regular frequency.

Roles

In MDAX, there are four fundamental roles to consider: stakeholders, product owner, project leader, and
team member.

A stakeholder is anyone who does not work for the project but could be affected by its outcome and must
be consulted regarding one or more project decisions. Stakeholders include the project sponsors, users,
beneficiaries, aggrieved parties, operators, regulators, and support personnel, among others.

The product owner is the person accountable for building the right thing. Specifically, he or she defines,
prioritizes, and approves the work performed.

Figure 3. Work Packages Schedule. This represents one possible arrangement of work packages
corresponding to the milestone plan in Figure 2. Each shaded area corresponds to the work associated
with the milestone immediately to its right. The resource-time frame enclosing the work package is its
time box. During iteration 1 and part of iteration 2, two members of the team will work on UX Design
and the selection of infrastructure. From iteration 2 to 6, the team will mainly work on the items
included in the first release; from iteration 7 to 9, the team will work on the features included in the
second release and in Beta testing. Adapted from [7]

Eduardo Miranda (c) May 2020 6

Project leader is a generic term used to encompass the project manager and the Scrum master roles, as
some organizations prefer to have an indivual with overall responsibility for the project, while others
resort to self-organizing teams. MDAX accepts both styles of governance, as long as the project manager
works collobaratively with, and empowers the team. Autocratic behaviors are discouraged. Basic
responsibilities of the project leader include serving as point of contact between management and the
team, enacting the MDAX framework, coordinating with external actors, following up on action items,
ensuring the team is fully functional and productive, and shielding the team from external interferences.

A team member is any person working on the project on a regular basis who is directly involved in the
creation, maintenance, or disposition of the project’s deliverables. Collectively, team members are
referred to as the development team. This definition aims to include all the people that need to have a
shared understanding of the project goals and how to realize them; in that sense, it excludes people such
as experts or others whose participation might be ephemeral.

The contribution of each of the roles to the activities and meetings in the MDAX framework is outlined in
Table 1.

Figure 4. Detailed MDAX workflow. Adapted from [7]

Eduardo Miranda (c) May 2020 7

Table 1. Responsibility assignment in MDAX

Role R
el

ea
se

P

la
n

n
in

g

M
ile

st
on

e
(r

e)

P
la

n
n

in
g

L
oo

k
 A

h
ea

d

M
ee

ti
ng

W
or

k
 I

te
m

R

ef
in

em
en

t

It
er

at
io

n
P

la
n

n
in

g
M

ee
ti

ng

D
ai

ly

M
ee

ti
ng

It
er

at
io

n
R

ev
ie

w
 M

ee
g

It
er

at
io

n
R

et
ro

sp
ec

ti
ve

M

ee
ti

ng

P
ro

je
ct

R

ev
ie

w
 M

ee
ti

ng

Stakeholders Influence,
inform
priorities

 Inform Provide
feedback
(optional)

 Authorizes
continuation
of work,
Re-
prioritizes
Terminates
project

Product
Owner

Prioritizes,
has final
word

Concurs Selects next
work items
within plan
scope

Clarifies Selects
work items
for next
iteration
within plan
scope

 Approves
work, reviews
iteration
performance

 Raises
issues,
makes
suggestions

Project
Leader

Concurs Has final
word,
works with
team

Drives and
follows up
on issues

Facilitates Facilitates Facilitates Facilitates,
reports
progress

Facilitates Facilitates

Team
Members

Challenges,
makes
suggestion

Builds the
plan

 Raise
issues,
makes
suggestions

Designs,
breaks
down into
tasks,
estimates

Reports
progress,
selects
new tasks

Run
demonstrations

What work?
What did
not work?
What needs
to be
changed

As needed

Artifacts

Besides the Milestone Plan and the Work Packages Schedule described above, MDAX defines six other
artifacts that support its execution: the Project Backlog, the Look Ahead Backlog, the Iteration Backlog,
the Iteration and Project Earned Value Charts, and the Milestone Slip Chart.

In MDAX, the Project Backlog is implemented by means of a Work Breakdown Structure (see Figure 5),
which is a hierarchical enumeration of all the outputs, including functionality, documentation,
infrastructure, gadgets, services, and so forth, to be delivered to the customer to meet the project
objectives, and the work necessary to produce them.1 These items, whether outputs or work, are
generically called work items (WIs). The hierarchical nature of the Work Breakdown Structure is
mandated by the need to facilitate the comprehension of the project’s scope and to support both the
progressive refinement of the identified items, their estimation and the collective assignment of WIs to
milestones. This arrengement, closely resembles the SAFe Requirements model [13] in the sense that its
elements are composed of outcomes (epics, capacities, features, stories) and tasks (enablers, technical
stories), but unlike SAFe’s, the MDAX Project Backlog is not limited to a four level hierarchy.

1 This type of Work Breakdown Structure is called a product-oriented Work Breakdown Structure. See Haugan [15],
for an excellent description on the process for creating them.

Eduardo Miranda (c) May 2020 8

Figure 5. A Work Breakdown Structure and its relation to the project’s outputs and the work necessary to
realize them. Adapted from NASA [14]

Also, in contrast with the traditional Product Backlog, the Project Backlog is not open ended, but
bounded. This means that although its items do not need to be completely specified at the beginning of
the project, for the purpose of planning, we will make a budgetary allowance for them, in the
understanding that when the time comes and they are refined, either we will circumscribe our level of
ambition to the available budget, or the plan will need to be revisited.

The first level of the hierarchy in the Project Backlog will define a set of outcomes and activities that
collectively and exclusively represent the entirety of the project scope. This is called the 100% rule [15]
Each descending level in the hierarchy represents an increasingly detailed definition of the project work.
The WIs can be defined from the bottom up, for example, aggregating the results of a brainstorming or
requirements elicitation session, or through a process of decomposition, starting from the top and working
downward. Outputs can contain lower-level outputs and work elements as descendants, but work
elements can only have other work elements as descendants. This convention assures consistency in the
determination of which work applies to which outputs. The decomposition will stop as soon as we reach
iteration-sized WIs, that is, outputs or work elements that could be realized by the team in the course of
an iteration.

Notice that, as defined, WIs at different levels of the Work Breakdown Structure definition map nicely to
agile concepts such as epics, features, user stories, enablers, and technical stories, and although these
terms might be favored by agile practitioners, we will limit their use to the Milestone Planning Example
section of the chapter to minimize the need to enumerate them all the time.

The Project Backlog is jointly controlled by the product owner and the development team. The former
needs to consult with the team to determine what is feasible within the confines established by a project’s

Eduardo Miranda (c) May 2020 9

budget and time frame, and the latter cannot change the committed scope without the approval of the
product owner.

The Look Ahead Backlog is a precedence ordered list of all the WIs that are ready, or are in the process of
being readied, to be executed in upcoming iterations. It will usually contain from one to three iterations
worth of work, but more precisely, its content will depend on the lead time required to ready the items.
For example, in a context where the product owner needs to consult with many stakeholders before
making a decision, the lead times will be longer than in a case where the product owner makes the
decision by itself. The Look Ahead Backlog does not need to be a separate entity from the Project
Backlog, but rather a different view of the same data, which serves a different need. The Look Ahead
Backlog is managed by the project leader.

The Iteration Backlog is a list of all the WIs to be worked on in the present iteration, plus the tasks
required for their realization. Although the Iteration Backlog does not need to be a different entity from
the Project Backlog, the incorporation of the implementation tasks will add an extra dimension not
present in the latter. Furthermore, if we add information about the state the tasks are in, such as to be
done, in progress, blocked, and done, and we use it as an information radiator, the Iteration Backlog
becomes a task board. The Iteration Backlog is developed and managed by the development team.

The progress and the cost of the work done are two fundamental indicators in every project. In MDAX,
we propose to communicate these by three charts: the Iteration Earned Value chart, the Project Earned
Value chart, and the Milestones Slip Chart (see Figures 6, 7, and 8). Although other represenatations are
possible, the reasons to use earned value like charts instead of the most common burndown charts are:
first, changes in scope are clearly shown by corresponding changes in the horizontal Planned Work curve;
second, the slope of the Accomplished Work curve is not affected by said changes, allowing for a more
accurate appreciation of the team’s rate of progress; and third, the Actual Effort curve shows the actual
number of hours that were required to achieve whatever progress was achieved, facilitating a more
realistic diagnostic of the project health. The Milestone Slip Chart is a high-level tool to communicate
stakeholders the overall state of the project in terms of the committed dates.

Figure 6. Iteration Earned Value Chart. Shows the amount of work planned for the iteration, the number of
days left, the progress so far, and the number of hours worked. The difference between the Actual Effort and
the Accomplished Work clearly indicates the team underestimated the difficulty of the work. The uptake in the
Planned Work curve indicates the team missed some work during the Iteration Planning Meeting. Adapted
from [7]

Eduardo Miranda (c) May 2020 10

Figure 7. Project Earned Value Chart. Shows the amount of work planned for the whole project, the
number of iterations left, the progress so far, and the number of hours worked. The projection of the
Accomplished Work shows that the team will likely deliver all the work planned as of today, while the
projection of the Actual Effort shows the team is putting in more effort than anticipated. If the
organization is paying for overtime, the project will be much costlier. The Planned Work curve shows
that between iterations 4 and 5 the product owner increased the scope, but seeing the projections at the
end of iteration 6 convinced him to lower his expectations. Adapted from [7]

Figure 8. Milestone Slip Chart. Shows the planned and currently forecasted dates for each
milestone. Dates with a round ending have been completed. The first three milestones were
completed on time or ahead of schedule. Currently, we are anticipating that the cloud infrastructure
will not be available on time and that the launch of the Beta Testing will also be delayed. The rest
of the milestones are still scheduled as planned. Adapted from [7]

Eduardo Miranda (c) May 2020 11

Activities and Meetings

The numbers in the steps refer to the numbers in the Detailed MDAX Workflow (See Figure 4) above.

Step 1: The Release Planning activity implements the process of deciding what features, user stories, etc.,
will be released together, such that the delivery has value to one or more stakeholders. The delivery dates
are not decided at this point but during the Milestone Planning Activity. Although MDAX does not
prescribe a method to do this, given that releases are prime milestone candidates, the use of a variant of
the MoSCoW [16] [17] method to guarantee a minum content, is highly recommended. The process is
executed at the beginning of the project or upon changes in the number or content of existing releases.

Step 2: Milestone Planning is the process of identifying relevant project milestones and scheduling the
work packages necessary to realize them. Albeit, there are many ways to construct a milestone plan, we
recommend a technique called Visual Milestone Planning [18], which will be discussed in a later section,
because of its collaborative nature. The milestone planning activity is executed at the outset of the project
and whenever changes to the scope that cannot be accommodated within current allocations, project
strategy or performance deviations, demand it. The process must take into consideration the availability of
appropriate resources as well as any other constraints that might condition the execution of the work
packages.

Steps 3 & 4: As WIs exist at different levels of specificity and readiness, they need to be readied before
they can be selected for execution. This readying process involves: 1) breaking down those WIs whose
realization efforts do not fit comfortably within the confines of an iteration into smaller WIs that do, 2)
completing any details that might be needed to implement the WIs, 3) addressing external dependencies
and preconditions that left unsettled could disrupt the work on the WI once this is started, and 4)
“moving”2 the resulting WIs into the Look Ahead Backlog.

The readying function is accomplished through the Look Ahead Meeting, also called the Rolling
Lookahead [19] in other processes, and the Work Item Refinement Meeting. Both meetings are part of the
work routinely performed in every iteration besides the work on the WIs scheduled for that iteration. At
the Look Ahead Meeting, the product owner and the project leader select the WIs that will need to be
executed two or three iterations down the road, raising any issues that will need to be addressed prior to
their execution; the product owner and project leader also follow up on previously risen items. The
purpose of this is to make sure there is enough time to make ready the upcoming WIs. The decision as to
which WIs to consider is informed by the Work Packages Schedule and the project status, but as the
Schedule only specifies order at the work package level, there is considerable leeway regarding which
WIs to select. During the Work Item Refinement Meeting, the team addresses issues raised during the
Look Ahead Meeting and responses from the product owner or the project stakeholders. The rationale for
unfolding the readying function over two distinct meetings is efficiency, as the selection of items and
their expedicting, does not requires the participation of the whole team as does the Work Item Refinement
Meeting.

Step 5: The Iteration Planning Meeting is the first activity of the current iteration. Its purpose is to select
the WIs to be worked on in accordance with the Work Packages Schedule and prepare a task plan for the
iteration that is about to start. The meeting starts by selecting candidate WIs from the Look Ahead

2 “moving” is just a metaphor for showing the WI in the Look Ahead Backlog, it only implies the physical
movement in the case of a physical implementation. In the case of a digital implementation, it will suffice with the
change of a state variable indicating the WI must now be included in the Look Ahead Backlog view.

Eduardo Miranda (c) May 2020 12

Backlog, based on what the Work Packages Schedule mandates, the WIs’ readiness state, and what was
accomplished during previous iterations. Once the candidate WIs have been selected, they are broken
down into the tasks required for their realization, and these are estimated. The estimates are then
aggregated and its total compared with the team availability to determine a feasible set of WIs. The
decomposition of WIs into tasks is documented in the Iteration Backlog.

Step 6: The Daily Meeting serves two purposes: coordination and control. At this meeting, which, as it
names implies, takes place every day of the iteration, members of the team discuss the work done, the
obstacles faced, and the tasks to be undertaken next by whoever becomes available. From the control
perspective, the fact that each team member has to report his or her progress to the group on a daily basis
serves to mitigate the social loafing effects that might otherwise arise because of the self-paced rhythm of
the pool mechanism employed for task assignment and the lack of a strict supervisory role, characteristic
of agile methods.

Step 7 & 8: Every iteration concludes with an Iteration Review Meeting and an Iteration Retrospective
Meeting. The first consists of two distinct activities: the deliverables demonstration and a performance
review from the perspective of the product owner and the stakeholders, and the second of an analysis of
the team health and work practices followed by the development team. The goal of the deliverables
demonstration activity is twofold: to get approval and feedback on the work done and to maintain
stakeholders’ engagement through their continued involvement. The goal of the performance review is to
assess what was done and how much it took to accomplish it, so that this information could be used in the
planning of new iterations. Finally, the goal of the reflection activity is to identify what worked well, what
did not work, and to give team members the chance to change it. Having a say over its way of working
gives team members a sense of ownership, out of which grows a greater commitment to the project and a
lesser need for bureaucratic control. These two, also offer a good opportunity to identify risks and think
about how to respond to them.

Step 9: The purpose of the Project Review Meeting is to go over the progress of the team against the
plan, keeping all interested parties abreast of any change in the milestones’ due dates and triggering a
replanning or termination in case of major deviations or changes in the business context. The meeting
frequency would be half or a quarter of that of the iteration review meetings, at the discretion of the
stakeholders.

THE VISUAL MILESTONE PLANNING METHOD

This section introduces an adaptation of the Visual Milestone Planning (VMP) Method [18] for use with
MDAX. VMP, (see Figure 9), is a participative planning method, which uses a number of large physical
canvases to promote team members’ involvement in the planning process [20]. In VMP, team members
collectively build the plan by manipulating milestones and work packages, reified through sticky notes, to
construct a dependency diagram and create the work packages schedule by accommodateding them in a
resource and time-scaled canvas, much like pieces in a puzzle or in a Tetris game. The process creates a
playful environment, which energizes the willing, yet exposes loafing behaviors, nudging the reluctant.

Agile processes are largely based on tacit knowledge and consensus decision making, so participation in
the planning process, as a means to develop a shared understanding and the willingness to embrace the
plan by those who will be executing it, is key. Lewis [21] expresses this forcefully: When a few people
work on a vision and then try to communicate it to others, it just never has the same impact. People to

Eduardo Miranda (c) May 2020 13

whom the vision is communicated either (1) don’t get it, (2) don’t agree with it, or (3) don’t buy into it,
because ‘it is their vision, not ours’.

When the people responsible for doing the work are included in its planning, they develop better and
more comprehensive plans as a consequence of the involvement of a mixture of people, which brings
different perspectives to the process. They also develop a better appreciation of what to do and become
more committed to it because they had the opportunity to be heard and understand how their efforts fit in
into the larger picture. Successful examples of participative planning in industry, beside those cited in the
introduction, are numerous: the pull planning process in the “Last Planner System” used in the
construction industry [22], visual planning [23] and Cards on the Wall [24] [25].

We assume here that all WIs to be considered for inclusion in the milestone plan have an estimate of the
effort required for its realization and that releases’ content has been defined by the release planning
process but not yet scheduled. In this and the following sections we will use interchangeably the generic
term WI and its more concrete agile counterparts: epics, features, user stories and technical stories to
make the examples more tangible.

At the core of the process we found the Milestone Planning Matrix (MPM) (See Figure 10). The MPM
matrix maps WIs to the milestones they help realize.

Figure 9. Detailed milestone planning workflow. Adapted from [18]

Eduardo Miranda (c) May 2020 14

The mapping of WIs to milestones is done at the highest possible level, that is, if all descendants of aWI
contribute to a single milestone, we will map the WI, and not each descendant, to it, but if some of the
descendants contribute to one milestone, such as a release, and others to another, such as a second release,
the highest level will be each of the descendendant WIs (See Figure 11).

Most of the time, WIs will map naturally and entirely to a single milestone, but this will not always be the
case. Assume, for example, that at the beginning of the project we define and assign a number of hours to
a refactoring activity. This activity will possibly contribute towards different milestones in different
proportons. One solution to model this, could be to create dummy descendants for the refactoring WI,
assigning the corresponding effort to each of these and mapping them to their corresponding milestones.
While this would solve the problem, the creation of dummy WIs, just to satisfy the choice of notation,
seems artificial, and unnecessarily complicates the Project Backlog. To address this type of situations,
without creating dummy WIs, the proposed approach, as illustrated by row “r” in Figure 10, is to allocate
a fraction of the total effort to each milestone to which the WI contributes.

Another special case is when we have a milestone originated in a commitment made to the team by the
sponsor or another party, for example, the provision of a special hardware or software, the approval of a
document, delivery of training, and so on. In this case, there is no work package associated with the
milestone, so, as illustrated by column “λ” in Figure 10, the column will be empty.

The beauty of the MPM approach is that it provides a straightforward mechanism to make visible the
relationship between WIs and milestones to everybody involved in the planning process, which is key in
preventing gaps and overlaps in the plan and in the achievement of its shared understanding by
stakeholders.

Figure 10. Milestone Planing Matrix. Adapted from [18]

Eduardo Miranda (c) May 2020 15

The numbers in the following steps refer to the numbers in the Detailed Milestone Planning Workflow (See
Figure 9) above. They are numerated 2.x since this is a decomposition of Activity 2 in Figure 4.

Step 2.1: The team starts by defining the milestones the plan will be based on. Milestones are chosen for
its relevance to the sponsor and the team, to signal, for example, the making of a major decision, the
completion of a release, or the achievement of an important process step, or to mark a commitment made
to the team, such as a customer makes proprietary equipment or technology required by the project
available to it. The name of each identified milestone is written on a separate sticky note, using color or
some other marker to distinguish between hard and soft milestones.

Notice that in the diagram there are arrows back and forth between the definition of milestones and the
product backlog. This is so, because sometimes, the definition of a milestone might trigger the creation of
a new WI that must be accounted for.

Correctly identifying the set of milestones to include in the plan is vital to its acceptance, as these
milestones will become the vocabulary that will be utilized to explain the work logic to stakeholders as
well as to gauge its progress. A good milestone set will include, as a minimum, the things the sponsors
care about and things that mark a material decline in the risk of the project from the team perspective. For
example, if the project sponsor wanted to have the software released in increments rather than in one shot,
it would make sense to include one milestone for each of the desired releases. As for the team, having an
architecture defined would make an excelent milestone, in the sense that a great deal of uncertainty goes
away, once the team has settled on the way forward.

Typical sources of milestones are the project contract, the team’s know how, the chosen process, risks,
seasonal sales, trade shows, external commitments, and so on. Milestones tend to fall in one of three
categories: the realization of an output, the attainment of a relevant project state, or the satisfaction of a
commitment made to the project team by an external party. The first two types of milestones are achieved
upon the completion of all work items included in the milestone’s work package. In the case of a
commitment to the team, the milestone is achieved when the party responsible for it, fulfils its obligation.
Milestones corresponding to external commitments tend not to have a work package associated with them

Figure 11. Mapping of the highest WI in the hierarchy

Eduardo Miranda (c) May 2020 16

and are an excellent tool to synchronize work across multiple teams, each working according to its own
plans.

The following are examples of the different types of milestones:

 Outputs: a document, a partial or total system capability, a prototype, the results of a survey
 Desired states: a major decision; an approval; an attainment of some kind, such as number of

transactions per second or number of users trained
 Satisfaction of commitment: delivery of proprietary equipment necessary to test the software

under development, a special hardware is delivered to the project team, publication of an API
specification by another team

The criteria by which to judge the realization of a milestone is known by different names in different
contexts: exit criteria, definition of done, and conditions of satisfaction, but they are all about the same
thing: having an objective test to determine whether the milestone has been reached or not.

Typically, a completion criterion would include the list of work items to be finished; a description of its
state, and, if applicable, quantity; a demonstrated performance, such as transactions per second or power
efficiency; and a definition of the quality those things need to be completed at, such as defects counts,
tolerances, weight budgets, level of coverage, and so forth.

Many times, writing the completion criteria will bring up the need to introduce new WIs or force the
break down and re-estimation of existing ones. This is a good thing because the early identification of
work gaps helps prevent problems later in the project. Working on the definition of done also contributes
to the development of a shared understanding of the work to be taken on by the team.

The number of milestones chosen must balance visibility with robustness and ease of understanding.
Depending on the size of the project, 10 to 50 milestones will satisfy the needs of most small to midsize
projects. Given the visual nature of the method, every effort should be made to confine the plan to a size
that allows it to be grasp on its entirety at a glance.

Step 2.2: The goal of the second step of the process is to understand and document the milestones in
relation to each other, such as which milestones need to be completed before a successor milestone could
be reached. Defining the logical sequence of milestones’ completion is a prerequisite for the formulation
of any project strategy. One way to document such a sequence is by means of a Milestones Dependency
Diagram. Notice that the diagram contains no dates, with the exception of those associated with a hard
milestone. This is to permit the consideration of different staffing and timing strategies later in the
process.

The process for the creation of the Milestones Dependency Diagram starts with a quick ordering of the
sticky notes containing the identified milestones, according to their most obvious sequence of completion,
and follows with a discussion of specific dependencies, the connecting of the corresponding milestones,
and, if necessary, the reordering of the original sequence. The initial ordering of milestones according to
their most obvious sequence saves the team from drawing dependencies that are implied by the
transitivity of the “depends on” relationship. It is worth repeating here that the dependencies between
milestones are finish to finish and not the most common finish-to-start dependencies, so the question the
team needs to answer for each milestone is what milestones should be completed to be able to reach this
one. A simple example of a finish-to-finish dependency is that between coding and testing. One could
start writing test cases even before coding begins, but one cannot finish it until the coding is done.

Eduardo Miranda (c) May 2020 17

Two alternatives to the Milestone Dependency Diagram that the author has used to capture the pairwise
dependencies between milestones are: the use of a tilted matrix similar to the “roof of a house on quality”
on top of the Milestone Planning Matrix and the use of a design structure matrix [26], followed by a
partition operation to obtain a dependency rank order. The first approach is very good at quickly
capturing the pairwise dependencies but does not provide visibility into the overall structure of the
problem; the second, which is also good, requires the introduction of knowledge and a tool, which some
practitioners might deem foreign to an agile approach.

Step 2.3: In this step, the header row of the Milestone Planning Matrix is populated with the name of the
milestones. Although not strictly required by the process, listing them chronologically from left to right
greatly contributes to the matrix readability and ease of work.

Step 2.4: In this step, WIs are associated with the milestones they help realize via the body of the
Milestone Planning Matrix. The association is informed by the milestone definition, for example, a
“Vendor Selected” milestone would be associated with all WIs leading to the selection of said vendor.
The association is done by labeling a row in the planning matrix with the name of the top-most WI
element whose descendants all contribute to the same milestone and recording the effort required by it at
the intersection of the row with the column corresponding to the milestone with which the element is
being associated. A milestone can have multiple WIs associated with it, that is, several WIs must be
completed to realize the milestone. In most cases, a WI would be associated with a single milestone; there
are, however, a few instances in which as previously discussed, it is convenient to allocate fractions of the
total effort required by the WI to multiple milestones. As said before, the set of WIs associated with a
milestone is called its work package.

Step 2.5: In this step, the team will black out known non-working periods such as the holidays, training,
and mandatory vacations, since in principle, there would be no work carried out during that time.

Step 2.6: In this step, the team marks hard milestones in the work package scheduling canvas. Hard
milestones will act as anchor points for the plan.

Steps 2.7, 2.8, & 2.9: In these steps, the team iteratively builds the Work Packages Schedule by posting
sticky notes on an empty space in the work package scheduling canvas, according to its timing and
staffing strategies, such as maintain a constant workforce, do not exceed six months, and so on; its
domain and its technical and process knowledge.

Figure 12 below shows a typical Work Packages Schedule. The Work Packages Schedule is a key piece
of the process since it is there that the plan materializes. As the planning involves the physical positioning
of sticky notes representing the effort required by a work package on a scheduling canvas, there has to be
a correspondence between the work hours represented by each note and the canvas’ physical dimensions.
If, for example, we choose each 3”x 3” sticky note to represent 40 hours of work, each three-inch span on
the date axis of the canvas will correspond to a week, and three inches on the resources axis will
correspond to a full-time equivalent (FTE) resource. Had we chosen the sticky note to represent 150 hours
of work, for example, for a larger project, each three inches on the time axis would correspond to a month
instead of a week. Whithin reason, sticky notes might be ripped off to express fractions of effort or time.

The first thing to do, is to account for the effort required by process meetings and background work,
which, might have been listed as WI or not, but in any case, will consume between 10 and 20% of the

Eduardo Miranda (c) May 2020 18

total hours available.3 The team does this by laying the corresponding amount of sticky notes at the
bottom of the scheduling canvas, along the makespan of the project. After doing this, the team lays on
sticky notes that correspond to the effort required by the milestones’ work packages, starting with those
corresponding to the hard milestones followed by those corresponding to the soft ones. All the effort
required by a milestone’s work package should be fitted in a time box to the left of it while respecting the
milestones’ order. The shape of a time box does not need to be regular. As much as possible, its contour
should reflect the nature of the work performed, such as front loaded, back loaded, flat, early peaked, late
peaked, and so forth. In any case, the time box’s height cannot surpass at any point the amount of
resources available that could reasonably be applied to the execution of the work package, nor can the
cumulative height of any stacked time boxes go above the total number of resources available for the
project. The time box’s length would be such that the area enclosed by it is equal to the work package’s
effort. Time boxes cannot overlap, as this would imply that somebody is actually performing, not
switching, between two tasks at the same time.

The leftmost side of the time box will indicate the time at which work on the milestone is planned to start,
and the rightmost will mark the date by which they should be reached at risk of delaying other milestones
or the whole project. If somehow the plan is not feasible, for example, if there are not enough resources or
the hard milestone dates cannot be met, the project scope should be renegotiated, the work approach
should be reformulated, or the constraints should be lifted.

Step 2.10: In this step, the plan is completed by sprucing the milestone sequence diagram, assigning due
dates to the soft milestones, adding responsibility information, and integrating all of them in a common
document. The approximate due date for each soft milestone is found by looking in the Work Packages
Schedule for the date aligned with the right edge of the time box associated with the milestone. Hard
milestones have, by definition, a set date.

3 ~ ∑
100

Figure 12. Work Packages Schedule. Adapted from [18]

Eduardo Miranda (c) May 2020 19

MILESTONE PLANNING EXAMPLE

The example presented here corresponds to the development of a milestone plan for a fictitious restaurant
chain called RestoLight and is organized around the method’s steps shown in Figure 9. In practice all
these activities will be performed by the team using sticky notes and large-sized papers, which will be
physically manipulated and drawn upon.

RestoLight, a famous restaurant chain, has asked your company to develop a tablet based order taking
systems for its franchises. Following several conversations with its executives, you sketched the notes
below and identified the functionality described in Table 2.

 The project must include a beta testing period to validate the app design.
 RestoLight will not accept deployment until a system-wide acceptance test is satisfactorily

completed.
 Sign-off will follow satisfactory deployment of the system.
 There must be at least three software releases: one to collect users’ feedback via beta testing,

another one to confirm the progress of the system towards the launch date, and the final one to
complete the system with minimum risk to the launch date.

 RestoLight is preparing to launch a new menu in June of next year, so it would like the system to
be ready at least one month before that.

For its part, your company:

 Cannot start the project until the end of September.
 Will assign four developers to work on the project.

Based on the requirements above and its professional knowledge, the development team produced the
Work Breakdown Structure shown in Figure 13, describing its understanding of the project’s scope and
the estimated effort required for its execution. As part of the MDAX process, the customer and the team
conducted a release-planning session where they agreed on the content for each of the three releases.
Release 1 will include all menu browsing, adding and removing items from an order, ordering, clearing an
order, adding a tip, paying with card, paying with cash and publishing updates to all devices. Release 2
will include the following user stories: customizing an ordered item, and adding and removing items from
the menu. Finally, Release 3 will include paying with loyalty points and modifying menu items.

Step 2.1: After considering what was important to communicate to the customer about the advance of the
project, the team chose the milestones listed in Table 3. Beware that the solution is not unequivocal.
While there are self-evident milestones like project kick-off, software releases, and the client request for a
beta test, others are created by the team, based on its best judgment as to what is important and what is
not. The completion criteria associated with each milestone define its meaning and help identify which
WIs should be mapped to them.

Steps 2.2: To construct the Milestone Dependency Diagram, we start by organizing the milestones
identified in the previous step in what seems like the most logical sequence, and then we identify and
connect them using finish-to-finish dependencies. Figure 14 shows one possible Milestone Dependency
Diagram for the project. The way to read the diagram is as follows: milestone x cannot be completed until
all its direct predecessors have been completed. For example, the platform cannot be made available until
the it is selected, and the Beta testing cannot be launched until Release 1 is completed. Notice that the
dependency chart says nothing about when the work for it ought to start.

Eduardo Miranda (c) May 2020 20

Table 2. Required functionality for the RestoLight Project

Id User Story
1 As a customer I would like to browse savoiry items in the menu so I can make up my mind about what

to order
2 As a customer I would like to browse drink items in the menu so I can make up my mind about what to

order
3 As a customer I would like to browse sweet items in the menu so I can make up my mind about what to

order
4 As a customer I would like to browse promotions items in the menu so I can make up my mind about

what to order
5 As a customer I would like to remove a book from my purchase cart if I change my mind about

purchasing it
6 As a customer I would like to add a menu item to my order so I can order it
7 As a customer I would like to remove a menu item from my order if I change my mind
8 As a custormer I would like to customize (cooking, ice, no ice, salt, no salt, etc) the items I order so

they would be served to my liking
9 As a customer I would like to order the chosen items so they would be served to me
10 As a customer I would like to clear all items from a order in case I completely change my mind
11 As a customer I would like to pay for my order with credit card
12 As a customer I would like to pay for my order with cash
13 As a customer I would like to pay for my order with loyalty points
14 As a customer I would like to add a tip to the check
15 As a restaurant manager I would like to add a new item to the menu so it would reflect the latest

offerings
16 As a restaurant manager I would like to remove an existing item from the menu so it would reflect the

latest offerings
17 As a restaurant manager I would like to change the details or price of an existing menu item so it would

reflect the latest offering
18 As a restaurant manager, once I have finished updating the menu, I would like to publish it in all

restaurant devices so they reflect the latest offering

Step 2.3: In this step, we read the milestones in order from the milestone dependency diagram and list
them from left to right as headers of the MPM. If two milestones have a similar due date, it doesn’t matter
which one you list first, since the sole purpose of the ordering is to increase the matrix’ readability.

Step 2.4: In this step, we assign WIs to their corresponding milestones. Although this tends to be a pretty
mechanical process whose value resides on the transparency it brings to the planning process, there are a
number of points worth highlighting (see Table 4). The first is that the milestone “Platform Available”
has no WI associated with it. This is so because, although the work to select the most adequate tablet is
part of the scope of the project, the effort to provision it, is not. The reason to include it as a hard
milestone is that it represents a commitment made to the project team by the customer, so they can start
developing, and to signal that a delay in fulfilling this promise could affect the completion date of the
whole project. The second is the case of the “Refactoring & Feedback” WI, in which a certain number of
hours were allocated to Release 2 and others to Release 3. We did not allocate any effort to Release 1,
because it was assumed the refactoring would be the result of introducing new functionality and feedback
from beta testing in the later releases. There are multiple criteria on how to allocate effort to each
milestone. In this case, we thought it would be best to allocate more hours to Release 3 because in it we
will remove all technical debt, and we will have to accommodate any changes resulting from beta testing.
The third point of interest is the “Browse Menu” WI. In this case, we could have included instead the
individual WIs: “Browse Drinks”, “Browse Savoury”, “Browse Sweets” and “Browse Promotions”, but in

Eduardo Miranda (c) May 2020 21

accordance with the recommendation to list the highest level element that contributes on its entirety to a
milestone, we did not which resulted in a simpler matrix. That being said, if one wanted greater visibility
of the allocations, listing all individual WIs would be perfectly acceptable as well.

Figure 13. Work Breakdown Structure for the RestoLight project

Step 2.5: In this step, we black out any known non-working periods involving the whole team, such as
holidays, closings, and special vacation periods.

Step 2.6: By definition, to be successful, a plan must satisfy its hard milestones, so they tend to act as
anchoring points for the whole project. The accommodation of the work elements in the scheduling
canvas starts by marking on it any hard milestones the project might have

Steps 2.7, 2.8 & 2.9: The goal of these steps is to establish a time frame in which the work represented by
each work package could be executed. To do this, the team labels a number of sticky notes proportional to
the effort required by the work package and accommodates them in an appropriate empty space on the
work packages scheduling canvas. The team starts by accommodating the effort corresponding to MDAX
recurring activities, followed by the work packages connected to hard milestones, and finally those
corresponding to the soft milestones, in the order dictated by the milestone dependency chart, and using
the team’s best judgment. If necessary, the team might intersperse buffers to protect critical milestones.

Figure 15 shows a possible Work Packages Schedule for the RestoLight project constructed following the
process described. Notice the holiday period extending from late December to early January. Should the

Eduardo Miranda (c) May 2020 22

plan had not been feasible, e.g. not meeting its hard deadline (in this case, the deployment in early April),
the team could have asked for additional resources; reorganize the work, for example, relax the condition
of not doing development work before the design concept has been approved; negotiate the scope; change
the completion deadline; or just take its chances.

Table 3. Potential project milestones

Milestone Hard date Completion criteria
Project kick-off October of this

year
Development team assembled, meeting with project sponsor concluded

Design concept
approved

 Information architecture and graphic design approved by sponsor

Platform selected Deployment platform selected
Design completed User testing completed and sponsor feedback incorporated into design
Platform available First week of

November
Tablets to be provided by customer are made available. This is a hard
milestone as any delay in it will affect the start of work on Release 1

Release 1 Functionality is ready and tested at 90% coverage and working in
production configuration. No broken menus or links.
Includes: All browse menu functionality, add item to order, remove
item from ordel, order, clear order, pay with credit card, pay with cash,
add tip, update devices

Beta testing
launched

 Release 1 software made available to beta users. User behavior
hypotheses defined. Website instrumentation working

Release 2 Functionality is ready and tested at 90% coverage and working in
production configuration.,
Includes: Customize item, add and remove items from menu

Beta testing
results reviewed

 All insights arising from the beta testing disposed

Release 3 Functionality is ready and tested at 90% coverage and working in
production configuration. Changes resulting from beta testing
implemented. Technical debt removed.
Includes: modify menu item, pay with loyalty points

Acceptance
testing procedure
approved

 Acceptance test suite approved by sponsor. Includes at least one
positive, one negative, and one invalid test case for each functionality

Acceptance test
completed

 All acceptance tests passed, with no objection from sponsor

System deployed Not later than
beginning of
May next year

All functionality running in production environment, operators trained.
System must run for at least 15 consecutive days without a fault
attributable to software

Customer sign-off Customer accepts ownership of the software
Project closed Project postmortem executed, all records archived

Step 2.10: In this step, the milestone plan is completed by reading the approximate date the work
associated with each milestone will be completed from the Work Packages Schedule and assigning it as
the due date for the milestone.

Eduardo Miranda (c) May 2020 23

Figure 14. Milestone Dependency Diagram for the RestoLight project. Adapted from [7]

Figure 15 One possible allocation of work packages to realize the plan. Adapted from [18]

Eduardo Miranda (c) May 2020 24

Table 4. Milestone planning matrix for the RestoLight project

PB Id WI P
ro

je
ct

 k
ic

ko
ff

D
es

ig
n

co
nc

ep
t

ap
pr

ov
ed

P
la

tf
or

m
 s

el
ec

te
d

D
es

ig
n

co
m

pl
et

e d

P
la

tf
or

m

av
ai

la
bl

e

R
el

ea
se

 1

B
et

a
te

st
in

g
la

un
ch

ed

R
el

ea
se

 2

B
et

a
te

st
in

g
re

su
lt

s
re

vi
ew

ed

R
el

ea
se

 3

A
T

P
 a

pp
ro

ve
d

A
T

P
 c

om
pl

et
ed

S
ys

te
m

 d
ep

lo
ye

d

C
us

to
m

er
 s

ig
n-

of
f

Pr
oj

ec
t c

lo
se

d

WI
effort

1.a UX design 130 10 140

1.b.1 Select
Platform

 110

 110

1.b.2 Install
development
stack

20 20

1.b.3 Set-up build
distribution

30 30

1.c Browse menu 200 200

1.c.2.1 Add item to
order

90 90

1.c.2.2 Remove item
from order

50 50

1.c.2.4 Order 50 50

1.c.2.5 Clear order 10 10

1.c.3.1 Add tip 40 40

1.c.3.2 Pay with credit
card

80 80

1.c.3.3 Pay with cash 50 50

1.c.4.4 Update all
devices

50 50

1.c.3.3 Customize 100 100

1.c.4.1 Add item to
menu

 60 60

1.c.4.2 Remove item
from menu

 40 40

1.d Beta testing 40 10 50

1.c.3.4 Pay with
loyalty points

 30 30

1.c.4.3 Modify menu
item

 60 60

1.c.5 Refactoring &
Feedback

 100 200 300

1.e Acceptance
testing

 50 50 100

1.f System
Deployment

 150 150

 Work package
effort

0 130 110 10 0 670 40 300 10 290 50 50 150 0 0 1810

CONCLUSION

Executing any, but the smallest of the projects without a guiding vision, is a receipe for unnecesary
change, frustration and waste, while developing a complete activity plan at the outset of it, has been
demonstrated to be, at least, ineffecient, and at worst, misleading. This means, we need to find a balance

Eduardo Miranda (c) May 2020 25

between the structure necessary to organize and guide the work, with the need to adjust it, as project
progresses. This is the essence of the hybrid approaches. The MDAX framework described in this paper
does that by combining a visual and participative apporoach to milestone planning, with a Scrum-like
execution approach, in a seamless way.

MDAX has been taught, and successfuly applied, by over two years at the Master of Software
Engineering Program at Carnegie Mellon University by students working in groups of four or five, on
year-long, real-world projects.

ACKNOWLEDGMENTS

The authors would like to thank, Raul Martinez, Gaetano Lombardi, and Diego Fontdevila for their advice,
contributions of knowledge, and investments of time to discuss earlier versions of this manuscript.

REFERENCES

[1] E. Brechner, Agile Project Management with Kanban, Redmond: Microsoft Press, 2015.

[2] M. Cohn, Agile Estimating and Planning, Upper Saddle River: Prentice-Hall, 2006.

[3] A. Cockburn, Crystal Clear A Human-Powered Methodology For Small Teams, Upper Saddle
River: Addison Wesley, 2004.

[4] J. Highsmith, Agile Project Management, 2nd Edition, Upper Saddle River: Addison-Wesley, 2010.

[5] R. Knaster and D. Leffingwell, SAFe Distilled 4.0, Addison-Wesley, 2017.

[6] D. Leffingwell, SAFe Reference Guide 4.0, Crawfordsville: Pearson, 2017.

[7] E. Miranda, "Milestone Driven Agile Execution," in Mora, M., Gómez, J. M., O'Connor, R. V., &
Buchalcevová, A. (Eds.), Balancing Agile and Disciplined Engineering and Management
Approaches for IT Services and Software Products, Hershey, IGI Global, 2021, pp. 1-27.

[8] R. Kneuper, Software Processes and Life Cycle Models, Cham: Springer, 2018.

[9] M. Kuhrmann, P. Diebold, J. Münch, P. Tell, V. Garousi, M. Felderer, K. Trektere, F. McCaffery,
O. Linssen, E. Hanser and C. Prause, "Hybrid Software and System Development in Practice:
Waterfall, Scrum, and Beyond," in Proceedings of the 2017 International Conference on Software
and System Process , Paris, 2017.

[10] E. Andersen, "Warning: activity planning is hazardous to your project's health!," International
Journal of Project Management, pp. 89 - 94, 1996.

[11] E. Andersen, K. Grude and T. Haug, Goal Directed Project Management, 4th., London: Kogan
Page, 2009.

Eduardo Miranda (c) May 2020 26

[12] K. Beck and M. Fowler, Planning Extreme Programming, Upper Saddle River: Addison-Wesley,
2000.

[13] Scaled Agile, "SAFe Requirements Model," 2 10 2018. [Online]. Available:
https://www.scaledagileframework.com/safe-requirements-model/. [Accessed 3 5 2020].

[14] NASA, "Systems Engineering Handbook, SP-2007-6105, Rev. 1," 2007.

[15] D. Haugan, Work Breakdown Structures for Projects, Programs, and Enterprises, Vienna:
Management Concepts, 2008.

[16] Agile Business Consortium, "Chapter 10: MoSCoW Prioritisation," 13 9 2019. [Online]. Available:
https://www.agilebusiness.org/page/ProjectFramework_10_MoSCoWPrioritisation.

[17] E. Miranda, "Time Boxing Planning: Buffered Moscow Rules," ACM SIGSOFT Software
Engineering Notes, Nov. 2011.

[18] E. Miranda, "Milestone Planning: A Participatory and Visual Approach," Journal of Modern
Project Management, vol. 7, no. 2, 2019.

[19] M. Cohn, Succeeding with Agile, Upper Saddle River: Addison Wesley, 2010.

[20] S. Whittaker and H. Schwarz, "Meetings of the Board: The Impact of Scheduling Medium on Long
Term Group Coordination in Software Development," Computer Supported Cooperative Work
(CSCW), vol. 8, no. 3, 1999.

[21] J. Lewis, Mastering Project Management, 2nd., New York: McGraw-Hill, 2008.

[22] H. Ballard, "The Last Planner System of Production Control (Disertation)," University of
Birmingham, Birmingham, 2000.

[23] M. Jurado, "Visual Planning in Lean Product Development," KTH Royal Institute of Technology,
Stockholm, 2012.

[24] D. Phillips, "Cards-on-the-Wall Sessions," 1 3 2019. [Online]. Available:
http://www.drdobbs.com/cards-on-the-wall-sessions/184414750.

[25] K. Forsberg, H. Mooz and C. H., Visualizing project management : models and frameworks for
mastering complex systems, 3rd., Hoboken: Wiley, 2005.

[26] S. Eppinger and T. Browning, Design Structure Matrix Methods and Applications, Cambridge: MIT
Press, 2012.

