
Evolution of Advanced 
Combinatorial Testing

for Software and systems 
(ACTS) from Design of 

Experiments (DoE) 

Raguh Kacker
National Institute of 

Standards and Technology
Gaithersburg, MD

Carnegie-Mellon University, 7 June 2011



Outline

• Brief review of Design of Experiments (DoE) methods 
and early history of Combinatorial Testing (CT)

• Review evolution of tools for generating test suites
• Discuss special aspects of CT for software and systems
• Orthogonal Arrays (OAs) and Covering Arrays (CAs)

– Limitations of OAs, benefits of CAs for software testing

• Mathematicians behind DoE/OAs/CAs
• Some comments on CT for software and systems
• List some applications areas for combinatorial testing

6/6/2011 2NIST



Combinatorial testing is a variation of Design of 
Experiments (DoE) adapted for testing software

• DoE began in agricultural in1920s, then animal science, 
medicine, chemical industry, manufacturing, electronics, 
computers & communication hardware-software

• Modern applications of DoE type methods include
– Biotechnology (genetic analyses)
– Combinatorial drug discovery methods 
– Combinatorial high throughput materials development
– Combinatorial testing for software and systems

• Present new challenges, offer new opportunities, require 
different adaptations of classical DoE approach

6/6/2011 3NIST



Classical DoE methodology and objectives

• Methodology to change values of a number of test 
factors, measure corresponding change in response to 
obtain useful information about a cause-effect system 
– DoE useful for study of systems subject to combinatorial effects, 

measurement error and random variation
– Information obtained with minimum expense of time and cost
– Term DoE includes associated data analysis

• Objectives in classical DoE:
– Compare treatments
– Identify important factors
– Identify optimum combinations of test settings
– Determine parameters at which variability is minimum

6/6/2011 4NIST



Classical DoE factors, plans, analysis

• In addition to test factors, concomitant factors include: 
uncontrolled factors, background factors (controlled in 
experiment, not in use conditions)
– Various techniques such as replication, randomization, blocking 

(homogeneous grouping) used to deal with such factors
– Not important in CT for software and systems

• Classical DoE plans
– Randomized block designs, Balanced incomplete block designs, 

Factorial and fractional factorial designs, Latin squares, 
Orthogonal-Latin squares, Orthogonal arrays

• Basic statistical analyses associated with DoE include
– Main effect: average effect over all values of other factors
– 2-way interaction effect: how effect changes with value of another
– ANOVA to determine significant main effects interaction effects

• Estimate parameters of linear models for prediction

6/6/2011 5NIST



Example of DoE experiment plan

• Five test Factors: four with 2 values and one with four
1. Viscosity {a} with 2 values {0, 1}
2. Feed rate {b} with 2 values {0, 1}
3. Spin Speed {c} with 2 values {0, 1}
4. Pressure {d} with 2 values {0, 1}
5. Materials {e} with 4 types {0, 1, 2, 3}

• Combinatorial test structure 24x41

– Total number of test combinations: 24x41 = 64

• Object: evaluate main effects only (no interaction effects)
• Possible to evaluate main effects using only 8 test cases

– Use orthogonal array OA(8, 24×41, 2) to set experiment plan

6/6/2011 6NIST



Orthogonal array: OA(8, 24×41, 2)

• Strength 2: every two columns contains all possible pairs 
of combinations an equal number of times

a b c d e data
1. 0 0 0 0 0 y1
2. 1 1 1 1 0   y2
3. 0 0 1 1 1   y3
4. 1 1 0 0 1 y4
5. 0 1 0 1 2 y5
6. 1 0 1 0 2 y6
7. 0 1 1 0 3 y7
8. 1 0 0 1 3 y8

6/6/2011 7

• Associate 5 factors with columns, 
values {0, 1}, {0, 1, 2, 3} with entries 
• Rows of OA specify 8 test cases
• Every test value paired with each 
test value of every other factor
• Main effect of factor a: 
(y2+y4+y6+y8)/4 - (y1+y3+y5+y7)/4
• Other factor values averaged over
• Need more than 8 test cases to 
evaluate 2-way interaction effects 

NIST



DoE plans are balanced

• DoE plans can be expressed in matrix form
– Columns: test factors
– Entries: test values
– Rows: tests cases

• In DoE “main effects” and “interaction effects” are linear 
combinations (called contrasts) of response data
– Average of N/2 data minus average of N/2 other data

• DoE plans must be balanced for main effects and 
interaction effects to be meaningful
– Each value of other factors must be included in both averages

• In combinatorial testing “interaction” means “joint 
combinatorial effect of two or more factors”

6/6/2011 8NIST



Early history of combinatorial testing for software 
and systems

• Mandl (1985) “Use of orthogonal Latin squares for 
testing Ada compiler” often cited first publication

• Japan/mid-1980s OAs used for testing hardware-
software systems: Tatsumi (1987), Tatsumi et al (1987)

• USA/late-1980s descendent orgs of AT&T (Bell Labs, 
Bellcore-Telcordia) exploring use of OAs for 
combinatorial testing;  developing tools based on OAs: 
Brownlie et al (1992), Burroughs et al (1994)

• In1990s use of OAs for testing of computer and 
communication hardware-software systems expanded

6/6/2011 9NIST



Evolution of tools for generating combinatorial test 
suites

• Early tools for generating test suites for pairwise testing
– OATS (Phadke AT&T) 1990s (not public)
– CATS (Sherwood AT&T) 1990s (not public)
– AETG (Cohen et al Telcordia) 1997 (commercial)
– IPO (Yu Lei NCSU) 1998 (not public)

• www.pairwise.org (Czerwonka, Microsoft) lists 34 tools
- Tconfig - CTS - Jenny
- TestCover - DDA - AllPairs
- AllPairs[McDowell] - PICT - EXACT
- IPO-s

• Primary algorithm in NIST-UTA tool ACTS is IPOG
– Generalization of 1998 IPO (Yu Lei UTA NIST)
– Freely distributed

6/6/2011 10NIST



Investigation of actual faults

• Kuhn et al (2001, 2002, 2004) investigated actual faults 
in a variety of software and systems to determine what 
kind of testing would have detected them
– 15 years medical devices recall data from FDA, Browser, Server, 

NASA distributed database, Network security system
– 2-way testing could detect 65 % to 97 % faults
– 3-way testing could detect 89 % to 99 % faults
– 4-way testing could detect 96 % to 100 % faults
– 5-way testing could detect 96 % to 100 % faults
– 6-way testing could detect 100 % faults in all cases investigated

• Kera Bell (2006, NCSU) arrived similar conclusion
• Empirical conclusion: 2-way testing useful, may not be 

inadequate; however 6-way testing may be adequate

6/6/2011 11NIST



Combinatorial high strength (t-way) testing

• Dynamic verification of input-output system 
– against its known expected behavior 
– on test suite of test cases selected such that 
– all t-way combinations are exercised with the 
– object of discovering faults in system 

• Earlier combinatorial test suites based on orthogonal 
arrays of strength 2 useful for pairwise (2-way) testing 

• Now tools available for high strength t-way testing
– ACTS (NIST/UTA) 2009 
– IPOG (Yu Lei UTA) optimized for t from 2 to 6
– Built-in constraints support
– http://csrc.nist.gov/groups/SNS/acts/index.html
– Freely downloaded by over 750 organizations and individuals

6/6/2011 12NIST



Special aspects of CT for software and systems-1

• System Under Test (SUT) must be exercised (dynamic 
verification)

• CT does not require access to source code
• Expected behavior (oracle) for each test case be known

– determined from functionality and/or other information

• Final result for each test case: passing or failing
• Objective of CT to reveal faults; a failure indicates fault
• Depending on fault required strength t can be from 2 to 6
• Each t-way combination must be exercised to reveal
• No need to run a t-way combination more than once

6/6/2011 13NIST



Special aspects of CT for software and systems-2

• Numbers of test values of factors may be different
• A test case is combination of one value for each factor
• Certain test cases invalid, incorporate constraints
• From pass/fail data identify t-way combinations which 

trigger failure among actual test cases (fault localization)
• No statistical model used in data analysis: test plan need 

not be balanced like classical DoE
• Choice of factors and test values highly critical for 

effectiveness of combinatorial testing
– Information about nature of faults to be detected helpful

6/6/2011 14NIST



Orthogonal arrays

• Fixed-value OA(N, k, v, t): N×k matrix such that every t-
columns contain all t-tuples the same number of times
– Strength: t
– Index: λ = N/vt

• Mixed-value orthogonal array OA(N,v1
k1v2

k2…vnkn, t)
– Rows: N
– Columns k = k1 + k2 + … + kn
– Entries: k1 columns have v1 values...kn columns have vn values
– Every t-columns contain all t-tuples the same number of times
– Index different for different columns
– In this notation OA(N, k, v, t) ≡ OA(N, vk, t)

6/6/2011 15NIST



Combinatorial test structure 24 x 31 Strength t = 2
OA for 24 x 31 dose not exist

6/6/2011 16

OA(8, 2441, 2)
a b c d e

1.  0 0 0 0 0 
2.  1 1 1 1 0
3.  0 0 1 1 1 
4.  1 1 0 0 1
5.  0 1 0 1 2
6.  1 0 1 0 2
7.   0 1 1 0 3 2
8.   1 0 0 1 3 2

CA(8, 2431, 2)
a b c d e

1.   0 0 0 0 0
2.   1 1 1 1 0 
3.   0 0 1 1 1 
4.   1 1 0 0 1
5.   0 1 0 1 2 
6.   1 0 1 0 2 

NIST



Covering arrays

• Fixed-value CA(N, k, v, t): N×k matrix such that every t-
columns contain all t-tuples at least once
– Strength: t
– OA(N, k, v, t) of index λ =1 is covering array with min test cases, 

however OA of index 1 are rare 
– Most CA are unbalanced

• Mixed-value covering array CA(N,v1
k1v2

k2…vnkn, t)
– Rows: N
– Columns k = k1 + k2 +… + kn
– Entries: k1 columns have v1 values…kn columns have vn values
– Every t-columns contain all t-tuples at least once
– In this notation CA(N, k, v, t) ≡ CA(N, vk, t)

6/6/2011 17NIST



Combinatorial test structure 24 x 31 Strength t = 2
OA for 24 x 31 dose not exist

6/6/2011 18

OA(8, 2441, 2)
a b c d e

1.  0 0 0 0 0 
2.  1 1 1 1 0
3.  0 0 1 1 1 
4.  1 1 0 0 1
5.  0 1 0 1 2
6.  1 0 1 0 2
7.   0 1 1 0 3 2
8.   1 0 0 1 3 2

CA(8, 2431, 2)
a b c d e

1.   0 0 0 0 0
2.   1 1 1 1 0 
3.   0 0 1 1 1 
4.   1 1 0 0 1
5.   0 1 0 1 2 
6.   1 0 1 0 2 

NIST



Limitations of test suites based on OAs

• OAs do not exist for many combinatorial test structures
– Construction requires advanced mathematics 

• Catalog of OAs 
http://www2.research.att.com/~njas/oadir/ 

• Most OAs of strength t = 2; Some t = 3 recent 
• Most fixed-value; Some mixed value OAs recent
• Combinatorial test structure fitted to suitable OA

– Need 24×31 use OA(8, 24×41, 2) make 4-values out of 3

• Constraints destroy balance property of OA

6/6/2011 19NIST



Benefits of Covering arrays

• CAs available for any combinatorial test structure
– Constructed by computational algorithms and mathematical 

methods (e.g. IPOG, IPOG-D in ACTS)

• CAs available for any required strength (t-way) testing
• For a combinatorial test structure if OA exists then CA of 

same or fewer test runs can be obtained
• For large numbers of factors, CAs of few test runs exist
• Generally CAs not balanced (like OAs), not needed in 

software testing
• Certain tests invalid, constraints can be incorporated

– Coverage defined relative to valid test cases

6/6/2011 20NIST



Mathematicians behind DoE/OA/CAs
• 1832 Évariste Galois (French, shot in dual at age 20)
• 1938 R C Bose (father of math underlying DoE)
• 1947 C R Rao (concept of orthogonal arrays)

– Hadamard (1893), RC Bose (1938), KA Bush, S Addelman, G 
Taguchi, JN Srivastava, …

• Catalog of OAs http://www2.research.att.com/~njas/oadir/ 
• 1993 N J A Sloan (definition of covering arrays)

– Renyi (1971), Katona (1973), Kleitman and Spencer (1973), .., 
Roux (1987, French, disappeared after PhD), …, Alan Hartman

• Connection between needs in software testing and CAs 
– Dalal and Mallows (1997), Cohen, Dalal, Fredman, Patton (1997) 

• Sizes of CAs (Charlie Colbourn ASU)
– http://www.public.asu.edu/~ccolbou/src/tabby/catable.html

• 2008 Forbes MIT: http://math.nist.gov/coveringarrays/

6/6/2011 21NIST



Some comments on CT for software and systems

• CT one of many complementary testing methods
• CT can reveal faults, not guarantee their absence 

(software testing is about risk management)
• CT can reveal many types of faults
• CT can be used in many stages of software development
• CT better than random (fewer test runs); may be better 

than human generated test suites (better coverage) 
• CT does not require access to source code; expected 

behavior (oracle) for test cases needs to be determined
– From functionality and/or other information

6/6/2011 22NIST



List some applications areas for combinatorial testing

• Software testing
– Test input space, test configuration space

• Computer/network security
– Network deadlock detection, buffer overflow
– http://csrc.nist.gov/groups/SNS/acts/index.html

• Testing Access Control Policy Systems
– Security, privacy (e.g. health records)
– http://csrc.nist.gov/groups/SNS/acpt/index.html

• Explore search space for study of gene regulations
– http://www.plantphysiol.org/content/127/4/1590.full

• Optimization of simulation models of manufacturing
– http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=1031

17

6/6/2011 23NIST



Summary
• Combinatorial testing is a variation of DoE adapted for 

testing software and hardware-software systems
• Early use of combinatorial testing was limited to pairwise 

(2-way) testing
• Investigations of actual faults suggests that up to 6-way 

testing may be needed to reveal some faults
• Combinatorial t-way testing for t up to 6 is now possible
• Combinatorial testing is one of many complementary 

methods for software and systems testing
• ACTS is useful tool for generating t-way test suites, 

supports constraints 
• Combinatorial testing useful when test cases can be 

expressed in terms of factors with discrete test values

6/6/2011 24NIST


