
Static Analysis for Software Quality

Jonathan Aldrich
Associate Professor

Carnegie Mellon University

MSE / NIST Seminar

June 7, 2011

Copyright © 2011 by Jonathan Aldrich

These slides may be freely shared and modified, with attribution

Find the Bug!

disable interrupts

Source: Engler et al., Checking System Rules

Using System-Specific, Programmer-Written

Compiler Extensions, OSDI ’00.

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

2

disable interrupts

re-enable interrupts

Find the Bug!

disable interrupts

Source: Engler et al., Checking System Rules

Using System-Specific, Programmer-Written

Compiler Extensions, OSDI ’00.

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

3

disable interrupts

re-enable interrupts

ERROR: returning

with interrupts disabled

Metal Interrupt Analysis

is_enabled

disableenable

enable =>

err(double enable)

Source: Engler et al., Checking System Rules

Using System-Specific, Programmer-Written

Compiler Extensions, OSDI ’00.

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

4

is_disabled

disable =>

err(double disable)

end path =>

err(end path

with/intr

disabled)

Applying the Analysis

initial state is_enabled

Source: Engler et al., Checking System Rules

Using System-Specific, Programmer-Written

Compiler Extensions, OSDI ’00.

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

5

transition to is_disabled

transition to is_enabled

final state is_enabled is OK

final state is_disabled: ERROR!

Session Objectives

After this session, attendees will be able to:

• Understand the benefits of analysis and how
it complements techniques like testing or inspection.

• Grasp the basics of static analysis technology.

• Know some analysis tools that are available, and
properties of others that are on the horizon

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

6

properties of others that are on the horizon

• Evaluate current and future commercial analysis tools
for use in their organization

• Develop a plan for introducing analysis into their
organization

Outline

• Why static analysis?
• The limits of testing and inspection

• What is static analysis?

• What are current tools like?

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

7

• What does the future hold?

• What tools are available?

• How does it fit into my organization?

Software Errors

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

8

Process, Cost, and Quality

Process intervention,
conventional testing, and
inspection yield first-
order software quality

improvement

Additional technology
and tools are needed to

close the gap

Critical Systems

Slide: William Scherlis

Perfection
(unattainable)

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

9

CMM: 1 2 3 4 5

Software
Quality

S&S, Agile, RUP, etc: less rigorous . . . more rigorous

Critical Systems
Acceptability

Process
Rigor, Cost

Existing Approaches

• Testing: is the answer

right?
• Verifies features work

• Finds algorithmic

problems

• Limitations
• Non-local interactions

• Uncommon paths

• Non-determinism

• Static analysis: will I get

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

10

• Inspection: is the quality

there?
• Missing requirements

• Design problems

• Style issues

• Application logic

• Static analysis: will I get

an answer?
• Verifies non-local

consistency

• Checks all paths

• Considers all non-

deterministic choices

Errors Static Analysis can Find

• Security vulnerabilities
• Buffer overruns, unvalidated inputF

• Memory errors
• Null dereference, uninitialized dataF

• Resource leaks
• Memory, OS resourcesF

• Violations of API or framework rules
• e.g. Windows device drivers; real time libraries; GUI

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

11

• Violations of API or framework rules
• e.g. Windows device drivers; real time libraries; GUI

frameworks

• Exceptions
• Arithmetic/library/user-defined

• Encapsulation violations

• Race conditions

Theme: consistently following rules throughout code

Empirical Results on Static Analysis

• Nortel study [Zheng et al. 2006]
• 3 C/C++ projects

• 3 million LOC total

• Early generation static analysis tools

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

12

• Conclusions
• Cost per fault of static analysis 61-72% compared

to inspections

• Effectively finds assignment, checking faults

• Can be used to find potential security

vulnerabilities

Empirical Results on Static Analysis

• InfoSys study [Chaturvedi 2005]
• 5 projects
• Average 700 function points

each
• Compare inspection with and

without static analysis

• Conclusions

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

13

• Conclusions
• Fewer defects
• Higher productivity

Adapted from [Chaturvedi 2005]

Quality Assurance at Microsoft (Part 1)

• Original process: manual code inspection
• Effective when system and team are small

• Too many paths to consider as system grew

• Early 1990s: add massive system and unit testing
• Tests took weeks to run

• Diversity of platforms and configurations

• Sheer volume of tests

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

14

• Sheer volume of tests

• Inefficient detection of common patterns, security holes
• Non-local, intermittent, uncommon path bugs

• Was treading water in Longhorn/Vista release of Windows
• Release still pending

• Early 2000s: add static analysis
• More on this later

Outline

• Why static analysis?

• What is static analysis?
• Abstract state space exploration

• What are current tools like?

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

15

• What does the future hold?

• What tools are available?

• How does it fit into my organization?

Static Analysis Definition

• Static program analysis is the systematic
examination of an abstraction of a program’s
state space

• Metal interrupt analysis
• Abstraction

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

16

• Abstraction
• 2 states: enabled and disabled

• All program information—variable values, heap contents—is
abstracted by these two states, plus the program counter

• Systematic
• Examines all paths through a function

• What about loops? More laterF
• Each path explored for each reachable state

• Assume interrupts initially enabled (Linux practice)
• Since the two states abstract all program information, the

exploration is exhaustive

How can Analysis Search All Paths?

• Exponential # paths with if statements

• Infinite # paths with loops

• Secret weapon: Abstraction
• Finite number of (abstract) states
• If you come to a statement and you’ve already

explored a state for that statement, stop.
• The analysis depends only on the code and the current

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

17

• The analysis depends only on the code and the current
state

• Continuing the analysis from this program point and state
would yield the same results you got before

• If the number of states isn’t finite, too bad
• Your analysis may not terminate

Example

1. void foo(int x) {

2. if (x == 0)

3. bar(); cli();

4. else

5. baz(); cli();

6. while (x > 0) {

Path 1 (before stmt): true/no loop

2: is_enabled

3: is_enabled

6: is_disabled

11: is_disabled

12: is_enabled

no errors

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

18

6. while (x > 0) {

7. sti();

8. do_work();

9. cli();

10. }

11. sti();

12. }

no errors

Example

1. void foo(int x) {

2. if (x == 0)

3. bar(); cli();

4. else

5. baz(); cli();

6. while (x > 0) {

Path 2 (before stmt): true/1 loop

2: is_enabled

3: is_enabled

6: is_disabled

7: is_disabled

8: is_enabled

9: is_enabled

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

19

6. while (x > 0) {

7. sti();

8. do_work();

9. cli();

10. }

11. sti();

12. }

11: is_disabled

already been here

Example

1. void foo(int x) {

2. if (x == 0)

3. bar(); cli();

4. else

5. baz(); cli();

6. while (x > 0) {

Path 3 (before stmt): true/2+
loops

2: is_enabled

3: is_enabled

6: is_disabled

7: is_disabled

8: is_enabled

9: is_enabled

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

20

6. while (x > 0) {

7. sti();

8. do_work();

9. cli();

10. }

11. sti();

12. }

9: is_enabled

6: is_disabled

already been here

Example

1. void foo(int x) {

2. if (x == 0)

3. bar(); cli();

4. else

5. baz(); cli();

6. while (x > 0) {

Path 4 (before stmt): false

2: is_enabled

5: is_enabled

6: is_disabled

already been here

all of state space has been

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

21

6. while (x > 0) {

7. sti();

8. do_work();

9. cli();

10. }

11. sti();

12. }

all of state space has been
explored

Soundness and Completeness

• Soundness
• If the analysis says the program is OK, there are no bugs
• No false negatives

• Completeness
• If the analysis gives a warning, it is real
• No false positives

• Contrast: Testing is complete, but not sound• Contrast: Testing is complete, but not sound

• No static analysis can be sound, complete, and
terminating
• Perfect static analysis is undecidable on nontrivial programs

for even simple attributes
• Thus, every analysis approximates (using abstraction)

• Many static analyses are useful nevertheless
• E.g. a sound tool with few false positives in practice

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

22

Attribute-Specific Analysis

• Analysis is specific to
• A quality attribute

• Race condition
• Buffer overflow
• Use after free

• A strategy for verifying that attribute
• Protect each shared piece of data with a lock
• Presburger arithmetic decision procedure for array

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

23

• Presburger arithmetic decision procedure for array
indexes

• Only one variable points to each memory location

• Analysis is inappropriate for some attributes
• Approach to assurance is ad-hoc and follows no

clear pattern
• No known decision procedure for checking an

assurance pattern that is followed

Outline

• Why static analysis?

• What is static analysis?

• What are current tools like?
• Example: FindBugs

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

24

• What does the future hold?

• What tools are available?

• How does it fit into my organization?

FindBugs Demonstration

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

25

FindBugs Demonstration

Outline

• Why static analysis?

• What is static analysis?

• What are current tools like?

• What does the future hold?
• Design intent driven analysis

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

26

• Design intent driven analysis

• What tools are available?

• How does it fit into my organization?

public class Logger { ...
private Filter filter;

/** ...
* @param newFilter a filter object (may be null)
*/

public void setFilter(Filter newFilter) ... {
if (!anonymous) manager.checkAccess();

Example: java.util.logging.Logger [Source: Aaron

Greenhouse]

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

27

if (!anonymous) manager.checkAccess();
filter = newFilter;

}

public void log(LogRecord record) { ...
synchronized (this) {

if (filter != null
&& !filter.isLoggable(record)) return;

} ...
} ...

}
Consider setFilter() in isolation

public class Logger { ...
private Filter filter;

/** ...
* @param newFilter a filter object (may be null)
*/

public void setFilter(Filter newFilter) ... {
if (!anonymous) manager.checkAccess();

Example: java.util.logging.Logger [Source: Aaron

Greenhouse]

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

28

if (!anonymous) manager.checkAccess();
filter = newFilter;

}

public void log(LogRecord record) { ...
synchronized (this) {

if (filter != null
&& !filter.isLoggable(record)) return;

} ...
} ...

}
Consider log() in isolation

/** ... All methods on Logger are multi-thread safe. */
public class Logger { ...
private Filter filter;

/** ...
* @param newFilter a filter object (may be null)
*/

public void setFilter(Filter newFilter) ... {
if (!anonymous) manager.checkAccess();

Example: java.util.logging.Logger [Source: Aaron

Greenhouse]

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

29

if (!anonymous) manager.checkAccess();
filter = newFilter;

}

public void log(LogRecord record) { ...
synchronized (this) {

if (filter != null
&& !filter.isLoggable(record)) return;

} ...
} ...

}
Consider class Logger in it’s entirety!

/** ... All methods on Logger are multi-thread safe. */
public class Logger { ...
private Filter filter;

/** ...
* @param newFilter a filter object (may be null)
*/

public void setFilter(Filter newFilter)…{
if (!anonymous) manager.checkAccess();

Example: java.util.logging.Logger

1

[Source: Aaron

Greenhouse]

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

30

if (!anonymous) manager.checkAccess();
filter = newFilter;

}

public void log(LogRecord record) { ...
synchronized (this) {

if (filter != null
&& !filter.isLoggable(record)) return;

} ...
} ...

}
Class Logger has a race condition.

2

1

3

/** ... All methods on Logger are multi-thread safe. */
public class Logger { ...
private Filter filter;

/** ...
* @param newFilter a filter object (may be null)
*/

public synchronized void setFilter(Filter newFilter)…{
if (!anonymous) manager.checkAccess();

Example: java.util.logging.Logger [Source: Aaron

Greenhouse]

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

31

if (!anonymous) manager.checkAccess();
filter = newFilter;

}

public void log(LogRecord record) { ...
synchronized (this) {

if (filter != null
&& !filter.isLoggable(record)) return;

} ...
} ...

}
Correction: synchronize setFilter()

Tool Demonstration: JSure

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

32

Tool Demonstration: JSure

Models are Missing

• Programmer design intent is missing
• Not explicit in Java, C, C++, etc

• What lock protects this object?
• “This lock protects that state”

• What is the actual extent of shared state of this object?
• “This object is ‘part of’ that object”

• Adoptability
• Programmers: “Too difficult to express this stuff.”
• Annotations in tools like JSure: Minimal effort — concise expression

• Capture what programmers are already thinking about

[Source: Aaron

Greenhouse]

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

33

• Annotations in tools like JSure: Minimal effort — concise expression
• Capture what programmers are already thinking about
• No full specification

• Incrementality
• Programmers: “I’m too busy; maybe after the deadline.”
• Tool design (e.g. JSure): Payoffs early and often

• Direct programmer utility — negative marginal cost
• Increments of payoff for increments of effort

• Tooling benefits of design intent
• Scaleability because analysis is local
• Precision (few false positives) due to avoiding incorrect assumptions

Reporting Code–Model Consistency

• Tool analyzes consistency
• No annotations ⇒ no assurance
• Identify likely model sites

• Three classes of results

[Source: Aaron

Greenhouse]

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

34

• Three classes of results

Code–model consistency

Code–model inconsistency

Informative — Request for annotation

Design Intent Case Study: Microsoft

Standard Annotation Language

• SAL: A language of contracts between
functions

• Preconditions
• Statements that hold at entry to the callee
• What does a callee expect from its callers?

• Postconditions

[Source:

Manuvir Das]

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

35

• Postconditions
• Statements that hold at exit from the callee
• What does a callee promise its callers?

• Usage example:
a0 RT func(a1 … an T par)

• Buffer sizes, null pointers, memory usage, F

SAL Example

wchar_t wcsncpy (__out_ecount(num) wchar_t *dest,

__in_ecount(num) wchar_t *src, size_t num);

_in

_out

The function reads from the buffer. The caller
provides the buffer and initializes it.

The function writes to the buffer. If used on the
return value, the function provides the buffer
and initializes it. Otherwise, the caller provides

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

36

_bcount(size)

_ecount(size)

_opt

return value, the function provides the buffer
and initializes it. Otherwise, the caller provides
the buffer and the function initializes it.

The buffer size is in bytes.

The buffer size is in elements.

This parameter / result can be NULL and must be
checked for nullness before a dereference

Recommendations

• If you use Microsoft’s toolsF
• Turn on /analyze

• Annotate all functions that write to buffers

• Annotate all library functions

• Annotation other functions as possible

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

37

• Annotation other functions as possible

Available as part of Microsoft Visual Studio

and Windows SDK

Outline

• Why static analysis?

• What is static analysis?

• How does static analysis work?

• What are current tools like?

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

38

• What are current tools like?

• What does the future hold?

• What tools are available?

• How does it fit into my organization?

Error Taxonomy (incomplete list)

• Concurrency
• race conditions
• deadlock
• data protected by locks
• non-lock concurrency (e.g. AWT)

• Exceptional conditions
• integer over/underflow
• division by zero
• unexpected exceptions
• not handling error cases
• type conversion errors

• Input validation
• command injection
• cross-site scripting
• format string
• tainted data

• Other security
• privilege escalation
• denial of service
• dynamic code
• malicious trigger
• insecure randomness
• least privilege violations

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

39

• Memory errors
• array bounds / buffer overrun
• illegal dereference (null, integer,

freed)
• illegal free (double free, not

allocated)
• memory leak
• use uninitialized data

• Resource/protocol errors
• calling functions in incorrect order
• failure to call initialization function
• failure to free resources

• least privilege violations

• Design and understanding
• dependency analysis
• heap structure
• call graph

• Code quality
• metrics
• unused variables

Microsoft Tools

• Static Driver Verifier (was SLAM)
• http://www.microsoft.com/whdc/devtools/tools/sdv.mspx
• Part of Windows Driver Kit
• Uses model checking to catch misuse of Windows device driver APIs

• PREfast and the Standard Annotation Language
• Ships with Visual Studio (premium edition) and Windows SDK

• http://msdn.microsoft.com/en-us/windows/bb980924
• Standard Annotation Language

• Lightweight code specifications
• Buffer size, memory management, return values, tainted data

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

40

• Buffer size, memory management, return values, tainted data
• PREfast

• Symbolically executes paths to find memory errors
• Lightweight version of PREfix analysis used internally at Microsoft
• Verifies SAL specifications

• Blogs on getting started with SAL
• http://blogs.msdn.com/michael_howard/archive/2006/05/19/602077.aspx
• http://blogs.msdn.com/michael_howard/archive/2006/05/23/604957.aspx

• Microsoft docs
• http://msdn2.microsoft.com/en-us/library/ms182025.aspx
• http://msdn2.microsoft.com/en-us/library/y8hcsad3.aspx

• If you use Microsoft tools, use these!

FindBugs

• findbugs.sourceforge.net

• Focus: bug finding

• Language: Java

• Open source project
• Free
• Large community

• Memory errors
• array bounds / buffer overrun
• illegal dereference (null, integer,

freed)
• double free
• memory leak
• use uninitialized data

• Input validation
• command injection
• tainted data

• Concurrency

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

41

• Large community
• Easy to adapt and

customize
• Many defect detectors
• Eclipse plugin support
• Mostly searches for

localized bugs

• Concurrency
• race conditions
• deadlock
• data protected by locks

• Resource/protocol errors
• failure to free resources

• Exceptional conditions
• integer over/underflow
• not handling error cases
• type conversion errors

• Code quality
• unused variables

Coverity Prevent/Extend

• www.coverity.com

• Focus: bugs and security

• Languages: C, C++, Java, C#

• OS: Windows, Linux, OS X,
NetBSD, FreeBSD, Solaris,
HPUX

• Builds on the Metal static
analysis research project at

• Memory errors
• array bounds / buffer overrun
• illegal dereference (null, integer,

freed)
• double free
• memory leak
• use uninitialized data

• Input validation
• command injection
• cross-site scripting
• format string
• tainted data

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

42

analysis research project at
Stanford

• Open source analysis project
• http://scan.coverity.com

• Selling points
• Low false positive rates
• Scales to 10 MLOC+
• Statistical bug finding approach
• Extensibility with Extend
• Seamless build integration

• tainted data

• Concurrency
• race conditions
• deadlock

• Resource/protocol errors
• calling functions in incorrect

order
• BSTR library usage (Microsoft

COM)
• failure to free resources

• Exceptional conditions
• not handling error cases

GrammaTech CodeSonar

• www.grammatech.com

• Focus: bug finding

• Languages: C, C++

• OS: Windows, Linux, Solaris,
OS X

• Company founded by Tim
Teitelbaum of Cornell and

• Memory errors
• array bounds / buffer overrun
• illegal dereference (null, freed)
• illegal free (double free, not

allocated)
• memory leak
• use uninitialized data

• Input validation
• format string
• tainted data

• Concurrency

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

43

Teitelbaum of Cornell and
Tom Reps of U. Wisc. Mad.

• Selling points
• Strong coverage of C/C++

errors
• Minimize false negatives
• Binary analysis support
• Support for custom checks
• Easy integration with build
• CodeSurfer program

understanding tool

• Concurrency
• race conditions
• deadlock

• Exceptional conditions
• integer over/underflow
• not handling error cases
• division by zero
• type conversion errors

• Design and understanding
• navigation
• dependency analysis
• ASTs, CFGs, pointer analysis
• heap structure
• call graph

Klocwork Insight

• www.klocwork.com

• Focus: security and bugs

• Languages: C, C++, Java

• OS: Windows, Linux, Solaris,
AIX, OS X

• Selling points

• Memory errors
• array bounds / buffer overrun
• illegal dereference (null, integer, freed)
• illegal free (double free, not allocated)
• memory leak
• use uninitialized data

• Input validation
• command injection
• cross-site scripting
• format string
• tainted data

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

44

• Selling points
• Strong focus on both bugs

and vulnerabilities
• Built-in extensibility
• Enterprise/process support

• track quality over time
• Architectural visualization

support

• Concurrency
• race conditions

• Resource/protocol errors
• calling functions in incorrect order

• Exceptional conditions
• not handling error cases

• Other security
• insecure randomness
• least privilege violations

• Design and understanding
• dependency analysis

Fortify 360 Source Code Analyzer

• www.fortify.com

• Focus: security

• Languages: C, C++, .NET family (C#,
VB), Java, ColdFusion, TSQL,
PLSQL, XML
• OO support from the beginning

• Windows, Linux, OS X, Solaris, AIX,
HP-UX, FreeBSD

• Memory errors
• array bounds / buffer overrun
• illegal dereference (null, freed)
• double free
• memory leak
• use uninitialized data

• Input validation
• command injection
• cross-site scripting
• format string
• tainted data

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

45

HP-UX, FreeBSD

• Sponsor of FindBugs, fully integrated
FindBugs support

• Selling points
• Strong focus on security
• Built-in extensibility
• Good coverage of security errors

• Concurrency
• race conditions
• deadlock

• Resource/protocol errors
• calling functions in incorrect order
• failure to call initialization function
• failure to free resources

• Exceptional conditions
• integer over/underflow
• unexpected exceptions
• not handling error cases

• Code quality
• metrics (attack surface, etc.)

PolySpace

• www.polyspace.com
• (now part of MathWorks)

• Focus: embedded system
defects

• Languages: C, C++, Ada
• UML Rhapsody, Simulink

models

• Memory errors
• array bounds / buffer overrun
• illegal dereference (null, integer,

freed)
• use uninitialized data
• reference to non-initialized class

members

• Exceptional conditions
• integer over/underflow

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

46

models

• OS: Windows, Linux, Solaris

• Selling points
• Focus on embedded systems
• Mathematically verifies code

with proof engine
• Assured code shown in green
• Errors in checked classes

cannot occur

• integer over/underflow
• division by zero
• arithmetic exceptions
• type conversion errors

SureLogic JSure

• www.surelogic.com

• Focus: concurrency, architecture,
API usage

• Language: Java

• Selling points
• Focus on Java concurrency
• Immediate return on

• Concurrency
• race conditions
• data protected by locks
• non-lock concurrency (e.g. AWT)

• Architecture compliance
• module structure

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

47

• Immediate return on
investment

• Professional services
• End-to-end support for FindBugs

analysis
• Sound analysis – shows

assured code w/ green plus
• Errors in checked classes

cannot occur • Full disclosure: I have a stake in
SureLogic as a consultant and
potential technology provider

Lattix LDM

• www.lattix.com

• Focus: architectural structure

• Languages: C, C++, Java, .NET

• OS: Windows, Linux, Mac OS X

• Published in OOPSLA 2005

• Design and understanding
• dependency analysis
• impact analysis
• architecture violations

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

48

• Selling points
• Focus on architectural

structure
• Design Structure Matrix

representation
• Built automatically from code
• Analysis extracts layered

architecture
• Checks design rules
• Downloadable trial version

Source: OOPSLA 2005 paper

Headway Software Structure 101

• www.headwaysoftware.com

• Focus: architectural structure

• Languages: Java, .Net

• OS: Windows, Linux, OS X

• Selling points

• Design and understanding
• dependency analysis
• impact analysis
• architectural violations
• complexity metrics

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

49

• Selling points
• Focus on architectural

structure
• Supports design structure

matrices, other notations

• Structural analysis
• dependencies
• impact of change
• architectural evolution

• Downloadable trial version
Source: Headway Software web site

Outline

• Why static analysis?

• What is static analysis?

• How does static analysis work?

• What are current tools like?

• What does the future hold?

• What tools are available?

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

50

• What tools are available?

• How does it fit into my organization?
• Lessons learned at Microsoft & eBay: Introduction,

measurement, refinement, check in gates
• Microsoft source: Manuvir Das
• eBay source: Ciera Jaspan

• OOPSLA 2007 Practitioner Report, “Understanding the
Value of Program Analysis Tools”

Introducing Static Analysis

• Incremental approach
• Begin with early adopters, small team
• Use these as champions in organization

• Choose/build the tool right
• Not too many false positives
• Good error reporting

• Show error context, trace
• Focus on big issues

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

51

• Focus on big issues
• Something developers, company cares about

• Ensure you can teach the tool
• Suppress false positive warnings
• Add design intent for assertions, assumptions

• Bugs should be fixable [Manuvir Das]
• Easy to fix, easy to verify, robust to small changes

• Support team
• Answer questions, help with tool

Tool Customization

• Tools come with many analyses
• Some relevant, some irrelevant
• eBay example [Jaspan et al. 2007]

• Dead store to local is a critical performance bug
if the dead code is a database access

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

52

• Process
• Turn on all defect detectors
• Estimate value of reports, false positives
• Assign each detector a priority

• Tied to enforcement mechanism, e.g. prohibited
on check-ins

Cost/Benefit Analysis

• Costs
• Tool license
• Engineers internally supporting tool
• Peer reviews of defect reports

• Benefits
• How many defects will it find, and what priority?

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

53

• How many defects will it find, and what priority?

• Experience at eBay [Jaspan et al. 2007]

• Evaluated FindBugs
• Found less severe bugs than engineer equivalent
• Clearly found more bugs than engineer equivalent
• Ultimately incorporated tool into process

• See OOPSLA 2007 practitioner report, Understanding the
Cost of Program Analysis Tools

Enforcement

• Microsoft: check in gates
• Cannot check in code unless analysis suite has been run and

produced no errors
• Test coverage, dependency violation, insufficient/bad design

intent, integer overflow, allocation arithmetic, buffer overruns,
memory errors, security issues

• eBay: dev/QA handoff
• Developers run FindBugs on desktop

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

54

• Developers run FindBugs on desktop
• QA runs FindBugs on receipt of code, posts results

• High-priority fixes required

• Requirements for success
• Low false positives
• A way to override false positive warnings

• Typically through inspection
• Developers must buy into static analysis first

Root Cause Analysis

• Deep analysis
• More than cause of each bug

• Identify patterns in defects

• Understand why the defect was introduced

• Understand why it was not caught earlier

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

55

• Opportunity to intervene
• New static analyses

• written by analysis support team

• Other process interventions

Impact at Microsoft

• Thousands of bugs caught monthly

• Significant observed quality improvements
• e.g. buffer overruns latent in codebaes

• Widespread developer acceptance
• Check-in gates

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

56

• Check-in gates

• Writing specifications

Analysis Maturity Model

Caveat: not yet enough experience to make strong claims

• Level 1: use typed languages, ad-hoc tool use

• Level 2: run off-the-shelf tools as part of process
• pick and choose analyses which are most useful

• Level 3: integrate tools into process
• check in quality gates, milestone quality gates
• integrate into build process, developer environments
• use annotations/settings to teach tool about internal libraries

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

57

• integrate into build process, developer environments
• use annotations/settings to teach tool about internal libraries

• Level 4: customized analyses for company domain
• extend analysis tools to catch observed problems

• Level 5: continual optimization of analysis
infrastructure
• mine patterns in bug reports for new analyses
• gather data on analysis effectiveness
• tune analysis based on observations

Analysis, Now and in the Future

• Static analysis is revolutionizing QA practices

in leading companies today

• Exhibit A: Microsoft
• Comprehensive analysis is centerpiece of QA for

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

58

• Comprehensive analysis is centerpiece of QA for

Windows

• Now affects every part of the engineering process

• Static analysis enables organizations to:
• increase quality while enhancing functionality

• differentiate themselves from the competition

Questions?

June 7, 2011 MSE / NIST Seminar: Static Analysis for
Software Quality

59

